欢迎光临散文网 会员登陆 & 注册

微分几何复习笔记(第二基本形式)(1)

2023-06-19 00:00 作者:iLune-  | 我要投稿

考完了,考的还不错,传个复习笔记꒰ᐢ⸝⸝•༝•⸝⸝ᐢ꒱ 有些证明就不证了,反正也没考到。前几章比较简单,虽然也有写,看心情传吧´༥`


Definition and properties

Consider regular surface S,for any point p%20%5Cin%20S,  the tangent space T_p%0A(S)  is spanned by

%5C%7B%20%5Cmathbf%7Bx%7D_u%2C%20%5Cmathbf%7Bx%7D_v%20%5C%7D,then the unit normal vector is  %5Chat%7B%5Cmathbf%7BN%7D%7D%20(p)%20%3D%20%5Cfrac%7B%5Cmathbf%7Bx%7D_u%20%5Ctimes%20%5Cmathbf%7Bx%7D_v%7D%7B%7C%0A%5Cmathbf%7Bx%7D_u%20%5Ctimes%20%5Cmathbf%7Bx%7D_v%20%7C%7D%20(p).

That is, we have a differentiable map %7B%5Cmathbf%7BN%7D%3A%7D%20%5Cmathbf%7Bx%7D%20(U)%0A%5Crightarrow%20%5Cmathbb%7BR%7D%5E3  that associates to each p%20%5Cin%20%5Cmathbf%7Bx%7D%20(U) 

a unit normal vector  %5Chat%7B%5Cmathbf%7BN%7D%7D%20(p)%20%3D%20%5Cfrac%7B%5Cmathbf%7Bx%7D_u%20%5Ctimes%0A%5Cmathbf%7Bx%7D_v%7D%7B%7C%20%5Cmathbf%7Bx%7D_u%20%5Ctimes%20%5Cmathbf%7Bx%7D_v%20%7C%7D%20(p)%20.

1.1 Gauss map

Let S in %5Cmathbb%7BR%7D%5E3 be a surface with an orientation %5Cmathbf%7BN%7D.The map %5Cmathbf%7BN%7D%3A%20S%20%5Crightarrow%20%5Cmathbb%7BR%7D%5E3   takes its values in the unit sphere S%5E2 .

The Gauss map

hen, we have the Gauss map %5Cmathbf%7BN%7D%3A%20S%20%5Crightarrow%20S%5E2 , which is differentiable.We can know that the direction of each N reserves after the Gauss map, which is just remove all normal vectors from the surface S to the unit sphere.

Also we get: d%20N_p%20%3A%20T_p%20(S)%20%5Crightarrow%20T_p%20(S%20) .

Then we can consider the curve in S%5E2 by the mapping %5Cmathbf%7BN%7D from the surface S that is %5Cmathbf%7B%5Calpha%7D%20(t)%20%5Crightarrow%20%5Cmathbf%7BN%7D%20%5Ccirc%0A%5Cmathbf%7B%5Calpha%7D%20(t)%20%3D%20%5Cmathbf%7BN%7D%20(t)%20 in %20S%5E2%20.

then the tengent vectors %7B%5Calpha%7D'%20(t) are mapped to the sphere, that is %5Cmathbf%7BN%7D'%20(%5Cmathbf%7B%5Calpha%7D%20(t))%20%3D%20d%20N_p%20(%5Cmathbf%7B%5Calpha%7D'%20(t))

Example 1:

Consider the unit sphere S%5E2%3A%20%5C%7B%20x%5E2%20%2B%20y%5E2%20%2B%20z%5E2%20%3D%201%20%5C%7D .A regular on S%5E2 is given by %5Cmathbf%7B%5Calpha%7D%20(t)%20%3D%20(x%20(t)%2C%20y%20(t)%2C%20z%20(t)), then N%20%3D%20(-%20x%2C%20-%0Ay%2C%20-%20z).Therefore we obtain:d%20N_p%20(%5Cmathbf%7B%5Calpha%7D'%20(t))%20%3D%20(-%20x'%2C%20-%20y'%2C%20-%0Az')%3D-%20%5Cmathbf%7B%5Calpha%7D'%20(t)

Example 2:

Consider the cylinder, that is %5C%7B%20x%2C%20y%2C%20z%20%5Cin%20%5Cmathbb%7BR%7D%5E3%2C%20x%5E2%20%2B%20y%5E2%20%3D%201%0A%5C%7D. The tangent vectors %5Cmathbf%7Bw%7D%3D%20(x'%2C%20y'%2C%200)%2C%20%5Cmathbf%7Bv%7D%3D%20(0%2C%200%2C%0Az) ,the unit normal vector inward is %5Cmathbf%7BN%7D%3D%20(-%20x%2C%20-%20y%2C%200).

Then we have N'%20(t)%20%3D%20%5Cmathbf%7BN%7D%3D%20(-%20x'%2C%20-%20y'%2C%200).

By comparing with %5Cmathbf%7Bw%7D and %5Cmathbf%7Bv%7D, we find that:

d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bw%7D)%20%3D%20(-%20x'%2C%20-%20y'%2C%200)%20%3D%20-%20%5Cmathbf%7Bw%7Dd%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bv%7D)%20%3D%20(-%20x'%2C%20-%20y'%2C%200)%20%3D%200%20%5Cmathbf%7Bv%7D.

Therefore d%5Cmathbf%7BN%7D  is of 2 eigen values %5Cmathbf%7B%5Clambda%7D_1%20%3D%20-%201%2C%0A%5Cmathbf%7B%5Clambda%7D_2%20%3D%200.

It is suprising to discover that, the Gauss map maps the points from S to S%5E2, to with different shapes.Consider the plane %5Cmathbf%7Bx%7D%20(x%2C%20y%2C%200) in %5Cmathbb%7BR%7D%5E3, the normal vector is (0%2C%200%2C%201),then the Gauss map of the plane is N%20((x%2C%20y%2C%200))%3D(0%2C%200%2C%201)%20.That is, all the points in the plane %5Cmathbf%7Bx%7D%20(x%2C%20y%2C%200)are mapped to the point (0%2C%200%2C%201) on the unit sphere.


Consider the cylinder, that is %5Cmathbf%7Bx%7D%20(x%2C%20y%2C%20z) the normal vectors are %5Cmathbf%7BN%7D%3D%20(%5Cpm%20x%2C%20%5Cpm%20y%2C%200) and x%5E2%20%2B%20y%5E2%20%3D%201.Therefore we find that all points on the cylinder are mapped to the circle x%5E2%20%2B%20y%5E2%20%3D%201 on the unit sphere.

1.2 Weingarten map

Actually the weingarten map is W_p%20%3D%20-%20d%5Cmathbf%7BN%7D_p...

Let a regular curve on S%20%3A%5Cmathbf%7B%5Cgamma%7D%20(t)%20%3D%20(u%20(t)%2C%20v%20(t)), then by Gauss map we have %5Cmathbf%7BN%7D((u%20(t)%2C%20v%20(t))).

Then %5Cmathbf%7BN%7D'((u%20(t)%2C%20v%20(t)))%3Dd%20%5Cmathbf%7BN%7D%5Cmathbf%7B%5Cgamma%7D'%20(t)%20%3D%0Ad%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bx%7D_u)%20u'%20%2B%20d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bx%7D_v)%20v'%20%3D%20N_u%20u'%20%2B%0AN_v%20v'.

In particular, d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bx%7D_u)%20%3D%20N_u%3D-%5Cmathbf%7B%5Clambda%7D_1%0A%5Cmathbf%7Bx%7D_u%2C%20d%5Cmathbf%7BN%7D%20(%5Cmathbf%7Bx%7D_v)%20%3D%20N_v%20%3D%20-%5Cmathbf%7B%5Clambda%7D_2%0A%5Cmathbf%7Bx%7D_v, that is:

                      d%5Cmathbf%7BN%7D_p%20%3D%5Ctext%7B%7D%20%5Cleft(%5Cbegin%7Barray%7D%7Bcc%7D%20-%5Cmathbf%7B%5Clambda%7D_1%20%26%200%5C%5C%0A%20%20%20%20%200%20%26%20-%5Cmathbf%7B%5Clambda%7D_2%0A%20%20%20%5Cend%7Barray%7D%5Cright)%2C%0A%0AW_p%20%3D%20%5Cleft(%5Cbegin%7Barray%7D%7Bcc%7D%0A%20%20%20%20%20%5Cmathbf%7B%5Clambda%7D_1%20%26%200%5C%5C%0A%20%20%20%20%200%20%26%20%5Cmathbf%7B%5Clambda%7D_2%0A%20%20%20%5Cend%7Barray%7D%5Cright)%20

Just know this concept is ok..

1.3 Self-adjoint linear map

The Weingarten map is self-adjoint, which is of the property: %5Clangle%0Ad%5Cmathbf%7BN%7D_p%20(w_1)%2C%20w_2%20%5Crangle%20%3D%20%5Clangle%20w_1%2C%20d%5Cmathbf%7BN%7D_p%20(w_2)%0A%5Crangle.

Consider basis vector, we have:

%5Clangle%20d%5Cmathbf%7BN%7D_p%20(%5Cmathbf%7Bx%7D_u)%2C%0A%5Cmathbf%7Bx%7D_v%20%5Crangle%20%3D%20%5Clangle%20%5Cmathbf%7Bx%7D_u%2C%20d%5Cmathbf%7BN%7D_p%20(%5Cmathbf%7Bx%7D_v)%0A%5Crangle%20%5CRightarrow%20%5Clangle%20N_u%2C%20%5Cmathbf%7Bx%7D_v%20%5Crangle%20%3D%20%5Clangle%20%5Cmathbf%7Bx%7D_u%2C%0AN_v%20%5Crangle.

Proof:

Because %5Clangle%20N%2C%20x_u%20%5Crangle%20%3D%200%3B%0A%5Clangle%20N_u%2C%20x_u%20%5Crangle%20%2B%20%5Clangle%0AN%2C%20x_%7Bu%20u%7D%20%5Crangle%20%3D%200%20%3B%20%5Clangle%20N_v%2C%20x_v%20%5Crangle%20%2B%20%5Clangle%20N%2C%20x_%7Bv%20v%7D%20%5Crangle%0A%3D%200%20%3B%20%5Clangle%20N_v%2C%20x_u%20%5Crangle%20%2B%20%5Clangle%20N%2C%20x_%7Bu%20v%7D%20%5Crangle%20%3D%200%3B

%5Clangle%20N_u%2C%20x_v%20%5Crangle%20%2B%20%5Clangle%20N%2C%20x_%7Bv%20u%7D%20%5Crangle%20%3D%200;

thus we have:

                           %20%5Clangle%20N_v%2C%20x_u%20%5Crangle%20%3D%20-%20%5Clangle%20N%2C%20x_%7Bu%20v%7D%20%5Crangle%20%3D%20-%20%5Clangle%20N%2C%0A%20%20%20x_%7Bv%20u%7D%20%5Crangle%20%3D%20%5Clangle%20N_u%2C%20x_v%20%5Crangle%20

Hence Weingarten map is self-adjoint.

In the proof above, we also descover:

%5Clangle%20-%20d%5Cmathbf%7BN%7D_p%20(v)%2C%20v%20%5Crangle

The 2 equations above are much more important later . . . 



Latex 公式在这里居然算图片,不能超过100条....分开更算了







微分几何复习笔记(第二基本形式)(1)的评论 (共 条)

分享到微博请遵守国家法律