46 语义分割和数据集【动手学深度学习v2】

图片分类:识别图中主要目标
目标检测:识别图中多个目标位置,并将目标用方框框出。但是用方框识别物体位置具有局限,例如无法对物体形状进行识别。
语义分割:精细识别图片,对每个像素进行label

应用:背景虚化

无人车路面分割

实例分割:对每个物体实例进行分割

代码实现
%matplotlib inline import os import torch import torchvision from d2l import torch as d2l
数据集的tar文件大约为2GB,所以下载可能需要一段时间。 提取出的数据集位于../data/VOCdevkit/VOC2012
。
#@save d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar', '4e443f8a2eca6b1dac8a6c57641b67dd40621a49') voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')
进入路径../data/VOCdevkit/VOC2012
之后,我们可以看到数据集的不同组件。 ImageSets/Segmentation
路径包含用于训练和测试样本的文本文件,而JPEGImages
和SegmentationClass
路径分别存储着每个示例的输入图像和标签。 此处的标签也采用图像格式,其尺寸和它所标注的输入图像的尺寸相同。 此外,标签中颜色相同的像素属于同一个语义类别。 下面将read_voc_images
函数定义为将所有输入的图像和标签读入内存。
VOC格式是一种用得比较广泛的数据集格式。
#@save def read_voc_images(voc_dir, is_train=True): """读取所有VOC图像并标注""" txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation', 'train.txt' if is_train else 'val.txt') mode = torchvision.io.image.ImageReadMode.RGB with open(txt_fname, 'r') as f: images = f.read().split() features, labels = [], [] for i, fname in enumerate(images): features.append(torchvision.io.read_image(os.path.join( voc_dir, 'JPEGImages', f'{fname}.jpg'))) labels.append(torchvision.io.read_image(os.path.join( voc_dir, 'SegmentationClass' ,f'{fname}.png'), mode)) return features, labels train_features, train_labels = read_voc_images(voc_dir, True)
下面我们绘制前5个输入图像及其标签。 在标签图像中,白色和黑色分别表示边框和背景,而其他颜色则对应不同的类别。
n = 5 imgs = train_features[0:n] + train_labels[0:n] imgs = [img.permute(1,2,0) for img in imgs] d2l.show_images(imgs, 2, n);

列举RGB颜色值和类名。
#@save VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] #@save VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
通过上面定义的两个常量,我们可以方便地查找标签中每个像素的类索引。 我们定义了voc_colormap2label
函数来构建从上述RGB颜色值到类别索引的映射,而voc_label_indices
函数将RGB值映射到在Pascal VOC2012数据集中的类别索引。
#@save def voc_colormap2label(): """构建从RGB到VOC类别索引的映射""" colormap2label = torch.zeros(256 ** 3, dtype=torch.long) for i, colormap in enumerate(VOC_COLORMAP): colormap2label[ (colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i return colormap2label #@save def voc_label_indices(colormap, colormap2label): """将VOC标签中的RGB值映射到它们的类别索引""" colormap = colormap.permute(1, 2, 0).numpy().astype('int32') idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256 + colormap[:, :, 2]) return colormap2label[idx]
例如,在第一张样本图像中,飞机头部区域的类别索引为1,而背景索引为0。
y = voc_label_indices(train_labels[0], voc_colormap2label()) y[105:115, 130:140], VOC_CLASSES[1]
(tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]]), 'aeroplane')
在之前的实验,例如 7.1节— 7.4节中,我们通过再缩放图像使其符合模型的输入形状。 然而在语义分割中,这样做需要将预测的像素类别重新映射回原始尺寸的输入图像。 这样的映射可能不够精确,尤其在不同语义的分割区域。 为了避免这个问题,我们将图像裁剪为固定尺寸,而不是再缩放。 具体来说,我们使用图像增广中的随机裁剪,裁剪输入图像和标签的相同区域。
#@save def voc_rand_crop(feature, label, height, width): """随机裁剪特征和标签图像""" rect = torchvision.transforms.RandomCrop.get_params( feature, (height, width)) feature = torchvision.transforms.functional.crop(feature, *rect) label = torchvision.transforms.functional.crop(label, *rect) return feature, label imgs = [] for _ in range(n): imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300) imgs = [img.permute(1, 2, 0) for img in imgs] d2l.show_images(imgs[::2] + imgs[1::2], 2, n);
自定义了一个语义分割数据集类VOCSegDataset
。 通过实现__getitem__
函数,我们可以任意访问数据集中索引为idx
的输入图像及其每个像素的类别索引。 由于数据集中有些图像的尺寸可能小于随机裁剪所指定的输出尺寸,这些样本可以通过自定义的filter
函数移除掉。 此外,我们还定义了normalize_image
函数,从而对输入图像的RGB三个通道的值分别做标准化。
#@save class VOCSegDataset(torch.utils.data.Dataset): """一个用于加载VOC数据集的自定义数据集""" def __init__(self, is_train, crop_size, voc_dir): self.transform = torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.crop_size = crop_size features, labels = read_voc_images(voc_dir, is_train=is_train) self.features = [self.normalize_image(feature) for feature in self.filter(features)] self.labels = self.filter(labels) self.colormap2label = voc_colormap2label() print('read ' + str(len(self.features)) + ' examples') def normalize_image(self, img): return self.transform(img.float() / 255) def filter(self, imgs): return [img for img in imgs if ( img.shape[1] >= self.crop_size[0] and img.shape[2] >= self.crop_size[1])] def __getitem__(self, idx): feature, label = voc_rand_crop(self.features[idx], self.labels[idx], *self.crop_size) return (feature, voc_label_indices(label, self.colormap2label)) def __len__(self): return len(self.features)
读取数据集
我们通过自定义的VOCSegDataset
类来分别创建训练集和测试集的实例。 假设我们指定随机裁剪的输出图像的形状为320×480
, 下面我们可以查看训练集和测试集所保留的样本个数。
crop_size = (320, 480) voc_train = VOCSegDataset(True, crop_size, voc_dir) voc_test = VOCSegDataset(False, crop_size, voc_dir)
read 1114 examples read 1078 examples
设批量大小为64,我们定义训练集的迭代器。 打印第一个小批量的形状会发现:与图像分类或目标检测不同,这里的标签是一个三维数组。
batch_size = 64 train_iter = torch.utils.data.DataLoader(voc_train, batch_size, shuffle=True, drop_last=True, num_workers=d2l.get_dataloader_workers()) for X, Y in train_iter: print(X.shape) print(Y.shape) break
torch.Size([64, 3, 320, 480]) torch.Size([64, 320, 480])
最后,我们定义以下load_data_voc
函数来下载并读取Pascal VOC2012语义分割数据集。 它返回训练集和测试集的数据迭代器。
#@save def load_data_voc(batch_size, crop_size): """加载VOC语义分割数据集""" voc_dir = d2l.download_extract('voc2012', os.path.join( 'VOCdevkit', 'VOC2012')) num_workers = d2l.get_dataloader_workers() train_iter = torch.utils.data.DataLoader( VOCSegDataset(True, crop_size, voc_dir), batch_size, shuffle=True, drop_last=True, num_workers=num_workers) test_iter = torch.utils.data.DataLoader( VOCSegDataset(False, crop_size, voc_dir), batch_size, drop_last=True, num_workers=num_workers) return train_iter, test_iter
