欢迎光临散文网 会员登陆 & 注册

复习笔记Day108:武汉大学2023数学分析参考答案

2023-02-28 19:59 作者:间宫_卓司  | 我要投稿

这张考卷上面有不少计算题,建议大家自己算一下

一、计算题

1.求极限%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cint_0%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%7D%7Bn%5Cleft(%20n%2B1%20%5Cright)%7D   

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cint_0%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%7D%7Bn%5Cleft(%20n%2B1%20%5Cright)%7D%5Cxlongequal%7B%5Ctext%7Bstolz%E5%AE%9A%E7%90%86%7D%7D%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cint_%7B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%7D%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%7D%7B2n%7D

%5Cbegin%7Baligned%7D%0A%09%5Cint_%7B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%7D%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cleft(%20x%2B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%20%5Cright)%20%5Cleft%7C%20%5Csin%20%5Cleft(%20x%2B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%20%5Cright)%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cpi%7D%7Bx%5Csin%20x%5Cmathrm%7Bd%7Dx%7D%2B%5Cleft(%20n-1%20%5Cright)%20%5Cpi%20%5Cint_0%5E%7B%5Cpi%7D%7B%5Csin%20x%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cpi%20%2B2%5Cleft(%20n-1%20%5Cright)%20%5Cpi%5C%5C%0A%09%26%3D%5Cleft(%202n-1%20%5Cright)%20%5Cpi%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cint_0%5E%7Bn%5Cpi%7D%7Bx%5Cleft%7C%20%5Csin%20x%20%5Cright%7C%5Cmathrm%7Bd%7Dx%7D%7D%7Bn%5Cleft(%20n%2B1%20%5Cright)%7D%3D%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B%5Cleft(%202n-1%20%5Cright)%20%5Cpi%7D%7B2n%7D%3D%5Cpi%20

2.求极限

%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cln%20%5Cleft(%20e%5E%7B%5Ctan%20x%7D%2B%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%20%2B%5Ctan%20x%7D%7B%5Cmathrm%7Barc%7D%5Csin%20%5Cleft(%202023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%7D

对于分母,有

%5Cmathrm%7Barc%7D%5Csin%20%5Cleft(%202023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%20%5Csim%202023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%5Cleft(%20x%5Crightarrow%200%20%5Cright)%20

对于分子,有

%5Cbegin%7Baligned%7D%0A%09%5Cln%20%5Cleft(%20e%5E%7B%5Ctan%20x%7D%2B%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%20%2B%5Ctan%20x%26%3D%5Cln%20%5Cleft(%20e%5E%7B2%5Ctan%20x%7D%2Be%5E%7B%5Ctan%20x%7D%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%20%5Cright)%5C%5C%0A%09%26%5Csim%20e%5E%7B2%5Ctan%20x%7D%2Be%5E%7B%5Ctan%20x%7D%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D-1%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B2%5Ctan%20x%7D-1%2Be%5E%7B%5Ctan%20x%7D%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%7D%7B2023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%7D%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B2%5Ctan%20x%7D-1%7D%7B2023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%7D%2B%5Cfrac%7B1%7D%7B2023%7D

e%5E%7B2%5Ctan%20x%7D-1%5Csim%202%5Ctan%20x%5Csim%202x

%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%5Csim%20%5Cleft(%20%5Cfrac%7Bx%5E2%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D2%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7Dx%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D

所以

%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B2%5Ctan%20x%7D-1%7D%7B2023%5Csqrt%5B3%5D%7B1-%5Ccos%20x%7D%7D%3D0

3.垃圾题目,题都懒得抄上来了

二、计算题

1.求%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B1%7D%7B3%2B%5Csin%20%5E2x%7D%5Cmathrm%7Bd%7Dx%7D

%5Cbegin%7Baligned%7D%0A%09%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B1%7D%7B3%2B%5Csin%20%5E2x%7D%5Cmathrm%7Bd%7Dx%7D%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Csin%20%5E2x%2B%5Ccos%20%5E2x%7D%7B4%5Csin%20%5E2x%2B3%5Ccos%20%5E2x%7D%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Ctan%20%5E2x%2B1%7D%7B4%5Ctan%20%5E2x%2B3%7D%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Csec%20%5E2x%7D%7B4%5Ctan%20%5E2x%2B3%7D%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctan%20x%7D%7B4%5Ctan%20%5E2x%2B3%7D%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctan%20x%7D%7B4%5Ctan%20%5E2x%2B3%7D%7D%2B%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cpi%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctan%20x%7D%7B4%5Ctan%20%5E2x%2B3%7D%7D%5C%5C%0A%09%26%3D%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B4x%5E2%2B3%7D%7D%2B%5Cint_%7B-%5Cinfty%7D%5E0%7B%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B4x%5E2%2B3%7D%7D%5C%5C%0A%09%26%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B4x%5E2%2B3%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

(好像写啰嗦了,算了懒得该了)

下面来计算最后一个积分

%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B4x%5E2%2B3%7D%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cmathrm%7Bd%7D%5Cleft(%20%5Cfrac%7B2%7D%7B%5Csqrt%7B3%7D%7Dx%20%5Cright)%7D%7B%5Cleft(%20%5Cfrac%7B2%7D%7B%5Csqrt%7B3%7D%7Dx%20%5Cright)%20%5E2%2B1%7D%7D%5Ccdot%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%3D%5Cfrac%7B1%7D%7B2%5Csqrt%7B3%7D%7D%5Ccdot%20%5Cleft(%20%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cleft(%20-%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5Cright)%20%5Cright)%20%3D%5Cfrac%7B%5Cpi%7D%7B2%5Csqrt%7B3%7D%7D

2.已知f连续可微,且f(1)%3D2%2Cf(4)%3D3,求%5Coint_L%7B%5Cfrac%7Bf%5Cleft(%20xy%20%5Cright)%7D%7By%7D%5Cmathrm%7Bd%7Dy%7DLy%3Dx%2Cy%3D4x,xy%3D1%2Cxy%3D4所围区域的边界,取逆时针方向

%5Cint_L%7B%5Cfrac%7Bf%5Cleft(%20xy%20%5Cright)%7D%7By%7D%5Cmathrm%7Bd%7Dy%7D%5Cxlongequal%7B%5Ctext%7BGreen%E5%85%AC%E5%BC%8F%7D%7D%5Ciint_S%7B%5Cleft%7C%20%5Cbegin%7Bmatrix%7D%0A%09%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D%26%09%09%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%5C%5C%0A%090%26%09%09%5Cfrac%7Bf%5Cleft(%20xy%20%5Cright)%7D%7By%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%7C%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D%3D%5Ciint_S%7Bf'%5Cleft(%20xy%20%5Cright)%20%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D

%5Ciint_S%7Bf'%5Cleft(%20xy%20%5Cright)%20%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D%5Cxlongequal%5B%5Cfrac%7By%7D%7Bx%7D%3Dv%5D%7Bxy%3Du%7D%5Cint_1%5E4%7B%5Cmathrm%7Bd%7Dv%5Cint_1%5E4%7Bf'%5Cleft(%20u%20%5Cright)%20%5Cleft%7C%20%5Cfrac%7B%5Cpartial%20%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20%5Cleft(%20u%2Cv%20%5Cright)%7D%20%5Cright%7C%5Cmathrm%7Bd%7Du%7D%7D

计算可得

%5Cleft%7C%20%5Cfrac%7B%5Cpartial%20%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20%5Cleft(%20x%2Cy%20%5Cright)%7D%20%5Cright%7C%3D%5Cfrac%7B2y%7D%7Bx%7D%3D2v

然后根据Day32的结论,有%5Cleft%7C%20%5Cfrac%7B%5Cpartial%20%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20%5Cleft(%20u%2Cv%20%5Cright)%7D%20%5Cright%7C%3D%5Cfrac%7B1%7D%7B2v%7D

所以

%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Cint_1%5E4%7B%5Cfrac%7B1%7D%7B2v%7D%5Cmathrm%7Bd%7Dv%5Cint_1%5E4%7Bf'%5Cleft(%20u%20%5Cright)%20%5Cmathrm%7Bd%7Du%7D%7D%3D%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cln%204-%5Cln%201%20%5Cright)%20%5Cright)%20%5Cleft(%20f%5Cleft(%204%20%5Cright)%20-f%5Cleft(%201%20%5Cright)%20%5Cright)%20%3D%5Cln%202

3.求曲面积分%5Ciint_S%7Bz%5Cleft(%20%5Cfrac%7B%5Calpha%20x%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Cbeta%20y%7D%7Bb%5E2%7D%2B%5Cfrac%7B%5Cgamma%20z%7D%7Bc%5E2%7D%20%5Cright)%20%5Cmathrm%7Bd%7DS%7D,其中S%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%2B%5Cfrac%7Bz%5E2%7D%7Bc%5E2%7D%3D1的上半平面,%5Calpha%2C%5Cbeta%2C%5CgammaS的外方向余弦

%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Ciint_S%7B%5Cfrac%7Bxz%7D%7Ba%5E2%7D%5Cmathrm%7Bd%7Dy%5Cmathrm%7Bd%7Dz%2B%5Cfrac%7Byz%7D%7Bb%5E2%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dz%2B%5Cfrac%7Bz%5E2%7D%7Bc%5E2%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D

S_1%3D%5C%7B(x%2Cy%2Cz)%7Cz%3D0%2C%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1%20%20%5C%7D,那么

%5Ciint_%7BS%2BS_1%7D%7B%5Cfrac%7Bxz%7D%7Ba%5E2%7D%5Cmathrm%7Bd%7Dy%5Cmathrm%7Bd%7Dz%2B%5Cfrac%7Byz%7D%7Bb%5E2%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dz%2B%5Cfrac%7Bz%5E2%7D%7Bc%5E2%7D%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%7D%5Cxlongequal%7B%5Ctext%7BGauss%E5%85%AC%E5%BC%8F%7D%7D%5Cleft(%20%5Cfrac%7B1%7D%7Ba%5E2%7D%2B%5Cfrac%7B1%7D%7Bb%5E2%7D%2B%5Cfrac%7B2%7D%7Bc%5E2%7D%20%5Cright)%20%5Ciiint_%7B%5COmega%7D%7Bz%5Cmathrm%7Bd%7Dx%5Cmathrm%7Bd%7Dy%5Cmathrm%7Bd%7Dz%7D

做代换x%3Dar%5Ccos%20%5Ctheta%20%5Csin%20%5Cvarphi%20%2Cy%3Dbr%5Csin%20%5Ctheta%20%5Csin%20%5Cvarphi%20%2Cz%3Dcr%5Ccos%20%5Cvarphi%20,可得

%5Cbegin%7Baligned%7D%0A%09%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cleft(%20%5Cfrac%7B1%7D%7Ba%5E2%7D%2B%5Cfrac%7B1%7D%7Bb%5E2%7D%2B%5Cfrac%7B2%7D%7Bc%5E2%7D%20%5Cright)%20%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cmathrm%7Bd%7D%5Cvarphi%20%5Cint_0%5E%7B2%5Cpi%7D%7B%5Cmathrm%7Bd%7D%5Ctheta%20%5Cint_0%5E1%7B%5Cleft(%20abcr%5E2%5Csin%20%5Cvarphi%20%5Cright)%20cr%5Ccos%20%5Cvarphi%20%5Cmathrm%7Bd%7Dr%7D%7D%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(%20%5Cfrac%7B1%7D%7Ba%5E2%7D%2B%5Cfrac%7B1%7D%7Bb%5E2%7D%2B%5Cfrac%7B2%7D%7Bc%5E2%7D%20%5Cright)%20abc%5E2%5Cpi%5C%5C%0A%5Cend%7Baligned%7D

三、解答题

1.求F%5Cleft(%20%5Calpha%20%5Cright)%20%3D%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%7D%7D%5Cmathrm%7Bd%7Dx%7D的连续区间

依比较判别法,要使这个积分收敛,首先要有

%5Cbegin%7Bcases%7D%0A%09%5Calpha%20-%5Cfrac%7B5%7D%7B2%7D%3C1%5C%5C%0A%09%5Calpha%20%3E1%5C%5C%0A%5Cend%7Bcases%7D

1%3C%5Calpha%20%3C%5Cfrac%7B7%7D%7B2%7D成立,而此时,%5Cforall%20%5Calpha%20%5Cin%20%5Cleft%5B%20%5Calpha%20_1%2C%5Calpha%20_2%20%5Cright%5D%20%5Csubset%20%5Cleft(%201%2C%5Cfrac%7B7%7D%7B2%7D%20%5Cright)%20,总成立

F%5Cleft(%20%5Calpha%20%5Cright)%20%3C%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cmax%20%5Cleft%5C%7B%20%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%20_1%7D%7D%2C%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%20_2%7D%7D%20%5Cright%5C%7D%20%5Cmathrm%7Bd%7Dx%7D%5Cle%20%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%20_1%7D%7D%5Cmathrm%7Bd%7Dx%7D%2B%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%20%5Cright)%7D%7Bx%5E%7B%5Calpha%20_2%7D%7D%5Cmathrm%7Bd%7Dx%7D

依魏尔斯特拉斯判别法,F%5Cleft(%20%5Calpha%20%5Cright)%20在定义域上内闭一致收敛,依一致收敛的性质,F%5Cleft(%20%5Calpha%20%5Cright)%20在定义域上连续

2.对点列z_n%3D(x_n%2Cy_n)(n%3D1%2C2%2C%5Ccdots),有

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Cunderline%7B%5Clim%20%7D%7D%5Cleft%5C%7C%20z_n%20%5Cright%5C%7C%20%3D%5Calpha%20%2C%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Coverline%7B%5Clim%20%7D%7D%5Cleft%5C%7C%20z_n%20%5Cright%5C%7C%20%3D%5Cbeta%20%2C%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cleft%5C%7C%20z_%7Bn%2B1%7D-z_n%20%5Cright%5C%7C%20%3D0

证明:对任意的%5Cgamma%20%5Cin%20%5Cleft(%20%5Calpha%20%2C%5Cbeta%20%5Cright)%20%2Cx%5E2%2By%5E2%3Dr%5E2上至少存在%5C%7Bz_n%5C%7D的一个聚点

d_n%3D%5Cleft%5C%7C%20z_n%20%5Cright%5C%7C%20,那么

%5Cleft%7C%20d_%7Bn%2B1%7D-d_n%20%5Cright%7C%3D%5Cleft%7C%20%5Cleft%5C%7C%20z_%7Bn%2B1%7D%20%5Cright%5C%7C%20-%5Cleft%5C%7C%20z_n%20%5Cright%5C%7C%20%5Cright%7C%5Cle%20%5Cleft%5C%7C%20z_%7Bn%2B1%7D-z_n%20%5Cright%5C%7C%20%5Crightarrow%200

72.1,可知d_n以任意的%5Cgamma%20%5Cin%20%5Cleft(%20%5Calpha%20%2C%5Cbeta%20%5Cright)%20为聚点,这和要证明的结论是等价的

3.问是否存在[0,5]上的函数f(x)满足下列条件,并说明

(1)f(x)连续可微

(2)f(0)%3Df(5)%3D1

(3)%5Cleft%7C%20f'%5Cleft(%20x%20%5Cright)%20%5Cright%7C%5Cle%20%5Cfrac%7B2%7D%7B5%7D

(4)%5Cleft%7C%20%5Cint_0%5E5%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%20%5Cright%7C%5Cle%20%5Cfrac%7B5%7D%7B2%7D

先来大概判断一下这个函数存不存在,考虑如下这种最极端的情况

这个时候面积就正好是5/2,而如果面积想要更小的话,曲线就要向下凹,这样第三个条件就不满足了,所以这样的函数可能是不存在的,下面来证明这件事

x%5Cin(0%2C%5Cfrac%7B5%7D%7B2%7D)%20时,依泰勒展开,有

f%5Cleft(%20x%20%5Cright)%20%3Df%5Cleft(%200%20%5Cright)%20%2B%5Cleft(%20x-%5Cfrac%7B5%7D%7B2%7D%20%5Cright)%20f'%5Cleft(%20%5Cxi%20%5Cright)%20%5Cge%20f%5Cleft(%200%20%5Cright)%20%2B%5Cfrac%7B2%7D%7B5%7D%5Cleft(%20x-%5Cfrac%7B5%7D%7B2%7D%20%5Cright)%20%3D%5Cfrac%7B2%7D%7B5%7Dx

%5Cint_0%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cint_0%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%7B%5Cfrac%7B2%7D%7B5%7Dx%5Cmathrm%7Bd%7Dx%7D%3D%5Cfrac%7B5%7D%7B4%7D

同理可证,%5Cint_%7B%5Cfrac%7B5%7D%7B2%7D%7D%5E5%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cfrac%7B5%7D%7B4%7D,并且两个等号同时成立当且仅当

f'%5Cleft(%20x%20%5Cright)%20%3D%5Cbegin%7Bcases%7D%0A%09-%5Cfrac%7B2%7D%7B5%7D%2Cx%5Cin%20%5Cleft(%200%2C%5Cfrac%7B5%7D%7B2%7D%20%5Cright)%5C%5C%0A%09%5Cfrac%7B2%7D%7B5%7D%2Cx%5Cin%20%5Cleft(%20%5Cfrac%7B5%7D%7B2%7D%2C5%20%5Cright)%5C%5C%0A%5Cend%7Bcases%7D

(严格来说是这个式子几乎处处成立吧,但是这样说就越来越说不清楚了)此时f(x)不可导,故等号不成立,故第四个条件不成立,即这样的函数是不存在的

4.已知u(x%2Cy)D%3Ax%5E2%2By%5E2%5Cle1上连续,且在x%5E2%2By%5E2%3C1满足%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20y%5E2%7D%3Du

(1)证明:存在x%5E2%2By%5E2%3D1上有u(x%2Cy)%5Cge0,则在x%5E2%2By%5E2%5Cle1上也有u(x%2Cy)%5Cge0

(2)证明:存在x%5E2%2By%5E2%3D1上有u(x%2Cy)%3E0,则在x%5E2%2By%5E2%5Cle1上也有u(x%2Cy)%3E0

(1)设在x%5E2%2By%5E2%3C1上有极小值点(x%5E*%2Cy%5E*),那么依Day34的结论,在那个点,有%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20x%5E2%7D%2C%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20y%5E2%7D%5Cge%200,故

u%5Cleft(%20x%5E*%2Cy%5E*%20%5Cright)%20%3D%5Cleft(%20%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20y%5E2%7D%20%5Cright)%20%5Cleft(%20x%5E*%2Cy%5E*%20%5Cright)%20%5Cge%200

(2)设x%5E2%2By%5E2%3D1u(x%2Cy)有最小值c%3E0,记v%3Du-c%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20,那么

%5Cfrac%7B%5Cpartial%20%5E2v%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2v%7D%7B%5Cpartial%20y%5E2%7D%3D%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2u%7D%7B%5Cpartial%20y%5E2%7D-4c%3Du-4c%3Cv%3Du-c%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20

那么v%3E%5Cfrac%7B%5Cpartial%20%5E2v%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2v%7D%7B%5Cpartial%20y%5E2%7Dv%5Cge%200x%5E2%2By%5E2%3D1,和(1)一样可以证明v%3E0x%5E2%2By%5E2%3C1,即u%3Ec%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20x%5E2%2By%5E2%3C1,故结论得证

5.设f(x)是仅有正实根的多项式,且%5Cfrac%7Bf'%5Cleft(%20x%20%5Cright)%7D%7Bf%5Cleft(%20x%20%5Cright)%7D%3D-%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7Bc_nx%5En%7D

(1)证明c_n%3E0(n%3E0)

(2)证明极限%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7B%5Csqrt%5Bn%5D%7Bc_n%7D%7D存在,且为f(x)的根的最小值

(1)设f%5Cleft(%20x%20%5Cright)%20%3D%5Cleft(%20x-x_1%20%5Cright)%20%5Cleft(%20x-x_2%20%5Cright)%20%5Ccdots%20%5Cleft(%20x-x_m%20%5Cright)%20,那么

%5Cfrac%7Bf'%5Cleft(%20x%20%5Cright)%7D%7Bf%5Cleft(%20x%20%5Cright)%7D%3D%5Cfrac%7B1%7D%7Bx-x_1%7D%2B%5Cfrac%7B1%7D%7Bx-x_2%7D%2B%5Ccdots%20%2B%5Cfrac%7B1%7D%7Bx-x_m%7D

进而

%5Cleft(%20%5Cfrac%7Bf'%5Cleft(%20x%20%5Cright)%7D%7Bf%5Cleft(%20x%20%5Cright)%7D%20%5Cright)%20%5E%7B%5Cleft(%20k%20%5Cright)%7D%3D%5Csum_%7Bn%3D1%7D%5Em%7B%5Cleft(%20-1%20%5Cright)%20%5Ekk!%5Cleft(%20x-x_n%20%5Cright)%20%5E%7B-1-k%7D%7D%3D-%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7Bk!c_%7Bn%2Bk%7Dx%5En%7D%2Ck%3D0%2C1%2C%5Ccdots%20

令x=0可得%5Csum_%7Bn%3D1%7D%5Em%7B%5Cfrac%7B1%7D%7Bx_%7Bn%7D%5E%7Bk%7D%7D%7D%3Dc_k%3E0

(2)不妨设x_1%5Cle%20x_2%5Cle%20%5Ccdots%20%5Cle%20x_m,那么

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7B%5Csqrt%5Bn%5D%7Bc_n%7D%7D%3D%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7B%5Csqrt%5Bn%5D%7B%5Csum_%7Bk%3D1%7D%5Em%7B%5Cfrac%7B1%7D%7Bx_%7Bm%7D%5E%7Bn%7D%7D%7D%7D%7D%3Dx_1

(这个需要严格证明一下,但是我懒得写了)

这套考卷的答案在公众号考研竞赛数学上面也有,我写到一半才发现···大家可以结合着看

复习笔记Day108:武汉大学2023数学分析参考答案的评论 (共 条)

分享到微博请遵守国家法律