2023年数学建模美赛备战参考—禁忌搜索算法
2023年数学建模美赛备战参考—禁忌搜索算法 禁忌搜索算法是组合优化算法的一种,是局部搜索算法的扩展。禁忌搜索算法是人工智能在组合优化算法中的一个成功应用。禁忌搜索算法的特点是采用了禁忌技术。所谓禁忌就是禁止重复前面的工作。禁忌搜索算法用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点。 禁忌搜索算法实现的技术问题是算法的关键。禁忌搜索算法涉及侯选集合、禁忌对象、评价函数、特赦规则、记忆频率信息等概念。 评价函数是侯选集合元素选取的一个评价公式,侯选集合的元素通过评价函数值来选取。以目标函数作为评价函数是比较容易理解的。目标值是一个非常直观的指标,但有时为了方便或易于计算,会采用其他函数来取代目标函数。 在禁忌搜索算法的迭代过程中,会出现侯选集中的全部对象都被禁忌,或有一对象被禁,但若解禁则其目标值将有非常大的下降情况。在这样的情况下,为了达到全局最优,我们会让一些禁忌对象重新可选。这种方法称为特赦,相应的规则称为特赦规则。 在计算的过程中,记忆一些信息对解决问题是有利的。如一个最好的目标值出现的频率很高,这使我们有理由推测:现有参数的算法可能无法再得到更好的解。根据解决问题的需要,我们可以记忆解集合、被禁对象组、目标值集合等的出现频率。频率信息有助于进一步加强禁忌搜索的效率。我们可以根据频率信息动态控制禁忌的长度。一个最佳的目标值出现的频率很高,有理由终止计算而将此值认为是最优值。