欢迎光临散文网 会员登陆 & 注册

生物化学答疑库(中)

2023-09-30 00:15 作者:生物yes  | 我要投稿

46.组成RNA的核苷酸也是以3′,5′-磷酸二酯键彼此连接起来。尽管RNA分子中的核糖还有2′羟基,但为什么不形成2′,5′-磷酸二酯键?-------------------------------------------------------答案


47.何谓Tm?影响Tm大小的因素有哪些?在实验中如何计算Tm值?-------------------------答案


48.什么是核酸杂交?有何应用价值?-------------------------------------------------答案


49.超螺旋的生物学意义有哪些?------------------------------------------------------答案


50.DNA双螺旋模型的主要特征是,一条链上的碱基与另一条链上的碱基在同一个平面上配对。Watson和Crick提出,腺嘌呤只与胸嘧啶配对,鸟嘌呤只与胞嘧啶配对。出于什么样的结构考虑,使他们确定这样的配对方案?-----------------------------------答案


51.如果降低介质的离于强度会对双螺旋DNA的解链曲线有何影响?如果向介质加入少量的乙醇呢?--------------------------------------------答案


52.为什么相同相对分子质量的线状DNA比共价闭合的环状DNA能结合更多的溴乙锭?如何利用这一点在氯化铯梯度中分离这两种DNA?为什么共价闭环DNA在含溴乙锭的介质中的沉降速度随溴乙锭的浓度增加出现近似U形的变化?-----------------------------答案


53.以B族维生素与辅酶的关系,说明B族维生素在代谢中的重要作用。---------------------答案


54.维生素A缺乏时,为什么会患夜盲症?----------------------------------------------答案


55.为什么缺乏叶酸和维生素B12可引起巨幼红细胞性贫血?------------------------------答案


56.简述维生素C的生化作用。--------------------------------------------------------答案


57.试述G蛋白参与信号传递在细胞代谢调节中的意义。----------------------------------答案


58.简述cAMP的生成过程及作用机制。-------------------------------------------------答案


59.介绍两条Ca++介导的信号传导途径。-----------------------------------------------答案


60.腺苷酸环化酶所催化的反应如下: ATP→cAMP +PPi,其平衡常数Keq=0.065,如果ATP水解成AMP + PPi,△Go′=-33.44 kJ/mol,试计算cAMP水解成AMP的△Go′是多少?----------------------------答案 


61.在25℃,pH为7.0的条件下,向浓度为0.1mol/L的葡萄糖-6-磷酸溶液加入磷酸葡萄糖变位酶以催化葡萄糖-6-磷酸→葡萄糖-1-磷酸的反应,反应的△Go′为 +7.5kJ/mol,求反应后葡萄糖-6-磷酸和葡萄糖-1-磷酸的最终浓度是多少?-----------------------------------答案


62.计算1摩尔葡萄糖在肝脏细胞中彻底氧化成CO2和H2O,可产生多少摩尔ATP?如果有鱼藤酮存在,理论上又可产生多少摩尔ATP?--------------------------答案


63.试比较电子传递抑制剂、氧化磷酸化抑制剂、和氧化磷酸化作用解偶联剂对生物氧化作用的影响。----------------------------------------------------答案


64.在一个具有完全细胞功能的哺乳动物肝脏细胞匀浆体系中,当1摩尔下列底物完全氧化成CO2和H2O时,能产生多少 ATP?①乳酸; ② 柠檬酸; ③磷酸稀醇式丙酮酸。--------------------------------答案


65.从ATP的结构特点说明其在机体细胞能量传递中的作用。-----------------------------答案


66.分离的完整线粒体悬浮液中有过量的ADP、O2和谷氨酸,谷氨酸在线粒体基质中可产生NADH和FADH2,如果在该体系中加入下列物质,会对氧的消耗和ATP的合成产生什么影响?(1) 二硝基苯酚,(2)二硝基苯酚,同时加入HCN,(3)加入寡霉素,然后加入二硝基苯酚。-----------------------------------------答案


67.葡萄糖分子的第二位用14C标记,在有氧情况下进行彻底氧化。问经过几轮三羧酸循环,该同位素碳可作为CO2释放?--------------------------------答案


68.糖酵解和糖异生作用中各有三个可能产生无效循环的位点,这三个位点在两条途径中分别由什么酶来催化?以两条途径中果糖-6-磷酸与果糖-1,6-二磷酸之间的转变为例说明细胞是如何避免无效循环的。-----------------------------------------------------------答案


69.已知磷酸稀醇式丙酮酸转变成丙酮酸时,△G0'为31.38 kJ/mol,计算在标准状况下,当[ATP]/[ADP]=10时, 磷酸稀醇式丙酮酸和丙酮酸的浓度比。----------------------------------------------答案


70.计算由2摩尔丙酮酸转化成1摩尔葡萄糖需要提供多少摩尔的高能磷酸化合物?---------答案


71.简要说明甘油彻底氧化成CO2和H2O的过程,并计算1摩尔甘油彻底氧化成CO2和H2O净生成多少摩尔的ATP?----------------------------------------------答案


72.简述血糖的来源和去路,人体如何维持血糖水平的恒定?---------------------------答案


73.在EMP途径中,磷酸果糖激酶受ATP的反馈抑制,而ATP却又是磷酸果糖激酶的一种底物,试问为什么在这种情况下并不使酶失去效用?---------------------答案


74.在充分光照下,25℃,pH值7的离体叶绿体中,ATP、ADP和Pi的稳态浓度分别为3mmol/L、0.1 mmol/L、10 mmol/L。问(a)在这些条件下,合成ATP反应的△G是多少?(b)在此叶绿体中光诱导的电子传递提供ATP合成所需的能量(通过质子电动势),在这些条件下合成1摩尔ATP所需的最小电势差(△E0′)是多少?假设每产生1摩尔ATP要求2摩尔电子(2e-)通过电子传递链。---------------------------------------答案


75.说明knoop的经典实验对脂肪酸氧化得到的结论。比较他的假说与现代β-氧化学说的异同。-----------------------------------答案


76.计算一分子硬脂酸彻底氧化成CO2和H2O,产生的ATP分子数,并计算每克硬脂酸彻底氧化产生的自由能。------------------------答案


77.试从脂类代谢紊乱角度分析酮症、“脂肪肝”和动脉粥样硬化的发病原因。(复旦大学2000年考研题)-------------------------答案


78.说明真核生物体内脂肪酸合酶的结构与功能。------------------------------------答案


79.脂肪酸氧化和脂肪酸的合成是如何协同调控的?-----------------------------------答案


80.试比较脂肪酸合成和脂肪酸β-氧化的异同。-------------------------------------答案


81.血浆脂蛋白有哪几类?并说明各自的来源、化学组成特点和主要生理功能。-----------答案


82.乙酰CoA羧化酶在脂肪酸合成中起调控作用,试述其调控机制。---------------------答案


83.简述载脂蛋白(即apo1ipoprotein)的分类、组成特点及其主要功能。--------------答案


84.简述影响和调节胆固醇合成的主要因素。----------------------------------------答案


85.丙氨酸、乳酸和丙酮酸具有相似的结构,通过计算说明在肝脏组织中,等摩尔的丙氨酸、乳酸和丙酮酸完全氧化,哪种物质产能更高?(南开大学2002考研题)-----------------------------------答案


86.在氨基酸的生物合成中,哪些氨基酸与三羧酸循环中间物有关?哪些氨基酸与糖酵解和戊糖磷酸途径有直接联系?---------------------------------------------------------------------------答案


87.尿素循环和三羧酸循环之间有哪些联系?--------------答案


88.谷氨酸经转氨基作用生成α-酮戊二酸,试问1摩尔谷氨酸彻底氧化成CO2和H2O共生成多少摩尔的ATP?并简要解释其氧化产能途经。-----------------------------------答案


89.单克隆抗体是通过杂交瘤技术制备的。杂交瘤细胞是经抗原免疫的B细胞和肿瘤细胞的融合细胞。为便于筛选融合细胞,选用次黄嘌呤磷酸核糖转移酶缺陷(HGPRT-)的肿瘤细胞和正常B细胞融合后在HAT(次黄嘌呤、氨甲蝶呤、胞苷)选择培养基中培养,此时只有融合细胞才能生长和繁殖。请解释选择原理。-----答案


90.怎样确定双向复制是DNA复制的主要方式,以及某些生物的DNA采取单向复制?--------答案




生物化学答疑库

46.------------------返回试题

[答] 2′-OH的空间位置与3′-OH和 5′-OH不在同一平面内。故不形成2′,5′-磷酸二酯键。


47.------------------返回试题

[答] DNA的变性从开始解链到完全解链,是在一个相当窄的温度范围内完成的,在这一范围内,紫外线吸收值的增加量达到最大增加量的50%时的温度为DNA的解链温度(溶解温度,melting temperature,Tm)。Tm值大小主要与GC含量有关,GC含量越高,Tm值越大;另外核酸分子越大,Tm值也越大,此外,溶液pH值,离子强度也影响Tm值。在具体的实验中,Tm值计算公式:Tm=69.3+0.41(G+C%),小于20bp的寡核苷酸Tm=4(G+C)+2(A+T)。

40. Poly(A)尾(1)可能与mRNA从核到质运输有关;(2)与mRNA 的半衰期有关,新生mRNA的Poly(A)尾较长,衰老的较短。5′端帽子 ( 1 ) 抗5′核酸外切酶的降解作用; ( 2 ) 蛋白质合成过程中,有助核糖体对翻译起点的识别和结合。


48.------------------返回试题

[答] 热变性后的DNA片段在进行复性时,不同来源的变性核酸(DNA或RNA)只要有一定数量的碱基互补(不必全部碱基互补),就可形成杂化的双链结构。此种使不完全互补的单链在复性的条件下结合成双链的技术称为核酸杂交。其应用价值:用被标记的已知碱基序列的单链核酸小分子作为探针,可确定待检测的DNA,RNA分子中是否有与探针同源的碱基序列。用此原理,制作探针,再通过杂交,可用于细菌,病毒,肿瘤和分子病的诊断(基因诊断)。


49.------------------返回试题

[答](1)超螺旋DNA比松弛型DNA更紧密,使DNA分子的体积更小,得以包装在细胞内;(2)超螺旋会影响双螺旋分子的解旋能力,从而影响到DNA与其他分子之间的相互作用;(3)超螺旋有利于DNA的转录、复制及表达调控。


50.------------------返回试题

[答] DNA分子的Watson-Crick模型是以两条多核苷酸链的糖-磷酸骨架呈有规律的螺旋结构为特征,这种螺旋结构有两个限制:①一条链上的碱基必须与另一条互补链的碱基形成氢键。②使碱基与糖-磷酸骨架相连接的糖苷键必须保持大约1.1nm的间隔。A与T、G与C的配对符合这种限制。若A与G或G与T配对,其间隔太大,以至不适合这种螺旋(即糖苷健间的间隔大于1.1nm),产生不稳定的膨胀结构,若T与C配对,其间隔太小,若A与C配对,在空间限制范围内不能形成氢键。只有A与T、G与C互补配对,才能保持其间隔约为1.1 nm,也才能在碱基对之间有效地形成氢键,Watson-Crick螺旋结构才稳定。


51.------------------返回试题

[答] 如果降低介质的离子强度,将减少对DNA糖-磷酸骨架的磷酸基负电荷的中和(掩盖),加大带负电荷磷酸基的彼此排斥,其结果将会降低它的熔点(Tm)。乙醇是非极性的,它的加入会减小稳定双螺旋DNA的疏水作用力,因此也会降低它的熔点。


52.------------------返回试题

[答] 溴乙锭插入碱基对之间,共价闭合的DNA比线状双链DNA结构紧密,溴乙锭插入的可能性较少。制备溴乙锭氯化铯梯度,环状DNA插入溴乙锭较少,沉降较快,可以将两者分开。DNA-溴乙锭复合物用异戊醇提取,DNA很容易与溴乙锭分开。超螺旋DNA沉降快,开环和线形DNA沉降慢。共价闭环DNA形成负超螺旋,具有较快的沉降速度。少量溴乙锭插入DNA的碱基对之间,减少负超螺旋密度,使沉降速度减慢,但是大量溴乙锭可以引入正超螺旋,使沉降加快。因此随溴乙锭浓度增加,共价闭环DNA的沉降速度出现近似U形变化。


53.------------------返回试题

[答] B族维生素是体内许多重要辅酶的组成成分,所以当B族维生素缺乏时,就会影响到结合酶的活性,使体内的许多代谢发生障碍。①维生素B1是硫胺素焦磷酸(TPP)的组成成分,TPP是α-酮酸氧化脱羧酶的辅酶,当维生素B1缺乏时,使丙酮酸氧化脱羧反应受阻。同时TPP又是转酮醇酶的辅酶,当维生素B1缺乏时,磷酸戊糖代谢障碍,使核酸合成及神经髓鞘中磷酸戊糖代谢受到影响。②维生素B2是FMN和FAD的组成成分。FMN和FAD是体内氧化还原酶的辅基,如琥珀酸脱氢酶、黄嘌呤氧化酶及NADH脱氢酶等。FMN和FAD也参与呼吸链电子传递过程,在生物氧化过程中发挥着重要作用。③维生素PP是NAD+、NADP+的组成成分。NAD+、NADP+在体内是多种不需氧脱氢酶的辅酶,如乳酸脱氢酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系等,同时维生素PP也参与呼吸链的电子传递。④维生素B6是磷酸吡哆醛和磷酸吡哆胺的组成成分。磷酸吡哆醛和磷酸吡哆胺是氨基酸代谢中的转氨酶和脱羧酶的辅酶,在氨基酸代谢中发挥着重要作用。⑤泛酸在体内组成ACP和CoA。二者构成酰基转移酶的辅酶,广泛参与糖、脂肪、蛋白质的代谢及肝中的生物转化作用。⑥生物素是体内多种羧化酶的辅酶,如丙酮酸羧化酶等。⑦叶酸的活性形式是四氢叶酸,四氢叶酸是体内一碳单位转移酶的辅酶,分子内部N5、N10两个氮原子能携带一碳单位。一碳单位在体内参加多种物质的合成,如嘌呤、胸腺嘧啶核苷酸等。当叶酸缺乏时,DNA的合成必然受到抑制,骨髓红细胞DNA合成减少,细胞分裂速度降低,细胞体积变大,造成巨幼红细胞性贫血。⑧体内的维生素B12参与同型半胱氨酸甲基化生成甲硫氨酸的反应,催化这一反应的甲硫氨酸合成酶的辅酶是维生素B12,它参与甲基的转移。维生素B12缺乏时,甲基转移反应受阻,不利于甲硫氨酸的生成,同时维生素B12还影响四氢叶酸的再生,使组织中游离的四氢叶酸含量减少,不能重新利用它来转运其他的一碳单位,影响嘌呤、嘧啶的合成,最终导致核酸合成障碍,影响细胞分裂,结果产生巨幼红细胞性贫血。


54.------------------返回试题

[答] 所谓夜盲症是指暗适应能力下降,在暗处视物不清。该症状产生是由于视紫红质再生障碍所致。因视杆细胞中有视紫红质,由11-顺视黄醛与视蛋白分子中赖氨酸侧链结合而成。当视紫红质感光时,11-顺视黄醛异构为全反型视黄醛而与视蛋白分离而失色,从而引发神经冲动,传到大脑产生视觉,此时在暗处看不清物体。全反型视黄醛在视网膜内可直接异构为11-顺视黄醛,但生成量少,故其大部分被眼内视黄醛还原酶还原为视黄醇,经血液运输至肝脏,在异构酶催化下转变成11-顺视黄醇,而后再回到视网膜氧化成11-顺视黄醛合成视紫红质,从而构成视紫红质循环。当维生素A缺乏时,血液中供给的视黄醇量不足,11-顺视黄醛得不到足够的补充,视紫红质的合成量减少,对弱光的敏感度降低,因而暗适应能力下降造成夜盲症。


55.------------------返回试题

[答] 巨幼红细胞贫血又称恶性贫血,特点是骨髓呈巨幼红细胞增生,胞质和胞核生长成熟不同步,胞核核酸代谢受到影响,成熟不良。此病的产生与叶酸和维生素B12的缺乏有密切关系。单纯因叶酸或维生素B12缺乏所造成的贫血称营养不良性贫血,其机制是合成核苷酸的原料一碳单位缺乏,DNA合成受阻,骨髓幼红细胞DNA合成减少,细胞分裂速度降低,体积增大,而且数目减少。一碳单位来自某些氨基酸的特殊代谢途径。FH4既是一碳单位转移酶的辅酶,又是携带和转移一碳单位的载体。分子内N5、N10两个氮原子能携带一碳单位参与体内多种物质的合成,特别是核酸的合成,一碳单位都是以甲基FH4的形式运输和储存,故甲基FH4的缺乏直接影响一碳单位的生成和利用。FH4的再生是在甲基转移酶的催化下将甲基转移给同型半胱氨酸生成S-腺苷甲硫氨酸,甲基转移酶的辅酶是维生素B12,维生素B12可通过促进FH4的再生而参与一碳单位代谢,当维生素B12缺乏时同样也会影响核酸代谢,影响红细胞的分化及成熟,所以叶酸和维生素B12缺乏都会导致巨幼红细胞性贫血。


56.------------------返回试题

[答] 维生素C的生化作用非常广泛,主要有以下两个方面。(1)参与体内多种羟化反应。①促进胶原蛋白的合成,当胶原蛋白合成时,多肽链中的脯氨酸、赖氨酸需羟化生成羟脯氨酸和羟赖氨酸,维生素C是催化反应中羟化酶的辅助因子之一;②参与胆固醇的转化,维生素C是7-α-羟化酶的辅酶,促进胆固醇转变成胆汁酸;③参与芳香族氨基酸的代谢,维生素C参与苯丙氨酸羟化成酪氨酸的反应,酪氨酸转变为对羟苯丙酸的羟化、脱羧、移位等步骤及转变为尿黑酸的反应。(2)作为供氢体参与体内氧化还原反应。①保护巯基酶的活性及GSH的状态,发挥解毒作用;②使红细胞高铁血红蛋白还原为血红蛋白,使其恢复运氧的功能;③使三价铁还原为二价铁,促进铁的吸收;④保护维生素A、E及B免遭氧化,并促进叶酸转变成四氢叶酸。


57.------------------返回试题

[答] G蛋白在激素、神经递质等信息分子作用过程中,起信号传递、调节和放大的作用。由于G蛋白家族结构的相似性(指β、γ-亚基)和多样性(指α-亚基),所以它的参与使激素和许多神经递质对机体的调节更复杂、更具多层次,更能适应广泛的细胞功能变化。G蛋白种类很多,它的介入使激素、受体更能适应不同细胞反应和同一细胞反应的多样性,使机体对外界环境变化的应答更灵敏、更准确、更精细。一些毒素如霍乱毒素和百日咳毒素等都是通过G-蛋白的α-亚基ADP核糖基化而失去正常调节功能,导致一系列病理反应。


58.------------------返回试题

[答] 胰高血糖素、肾上腺素、促肾上腺皮质激素等与靶细胞膜上的特异性受体结合,形成激素-受体复合物而激活受体,通过G蛋白介导,激活腺苷酸环化酶,腺苷酸环化酶催化ATP转化成cAMP和焦磷酸,cAMP在磷酸二酯酶作用下水解为5'-AMP而丧失作用。cAMP作为激素作用的第二信使对细胞的调节作用是通过激活cAMP依赖性蛋白激酶(蛋白激酶A)来实现的。蛋白激酶A由两个调节亚基和两个催化亚基组成的四聚体别构酶,当四分子cAMP与调节亚基结合后,调节亚基与催化亚基解离,游离的催化亚基催化底物蛋白磷酸化,从而调节细胞的物质代谢和基因表达。活化的蛋白激酶A一方面催化胞质内一些蛋白磷酸化调节某些物质的代谢过程,如使无活性的糖原磷酸化酶激酶b磷酸化,转变成无活性的糖原磷酸化酶激酶α,后者催化糖原磷酸化酶b磷酸化成为有活性的糖原磷酸化酶α,调节糖原的分解。活化的蛋白激酶A另一方面进入细胞核,可催化反式作用因子-cAMP应答元件结合蛋白磷酸化,与DNA上的cAMP应答元件结合,激活受cAMP应答元件调控的基因转录。另外活化的蛋白激酶还可使核内的组蛋白、酸性蛋白及膜蛋白、受体蛋白等磷酸化,从而影响这些蛋白的功能。


59.------------------返回试题

[答] Ca++是体内许多重要激素作用的第二信使,作为第二信使Ca++可通过不同的途径来调节体内的物质代谢过程。①Ca++-磷脂依赖性蛋白激酶途径:乙酰胆碱、去甲肾上腺素、促肾上腺皮质激素等信号分子作用于靶细胞膜上的特异受体,通过G蛋白激活磷脂酰肌醇特异性磷脂酶C而水解膜组分磷脂酰肌醇4,5-二磷酸而生成DG和IP3。IP3从膜上扩散至胞质,与内质网和肌浆网上的IP3受体结合,促进Ca++释放使胞质内Ca++浓度升高。DG在磷脂酰丝氨酸和Ca++的配合下激活蛋白激酶C,对机体的代谢、基因表达、细胞分化和增殖起作用。②Ca++-钙调蛋白依赖性蛋白激酶途径:钙调蛋白有四个Ca++结合位点,当胞浆Ca++升高时,Ca++与钙调蛋白结合,使其构象发生改变而激活Ca++-钙调蛋白依赖性蛋白激酶,后者可使许多蛋白质的丝氨酸或苏氨酸残基磷酸化,引起蛋白质活性升高或降低,影响机体的代谢过程。如活化的Ca++-钙调蛋白依赖性蛋白激酶能激活腺苷酸环化酶而加速cAMP的生成,也能激活磷酸二酯酶而加速cAMP的降解;它还能激活胰岛素受体的酪氨酸蛋白激酶。


60.------------------返回试题

[答] 由于已知反应 ATP→cAMP +PPi 的Keq,根据△Go′与Keq的关系得: 

△Go′=-2.303RTlgKeq=-2.303×8.314×10-3×298×lg0.065=15.61 kJ/mol

那么逆反应cAMP +PPi→ATP的△Go′为 -15.61 kJ/mol

又已知ATP→AMP + PPi 的△Go′=-33.44 kJ/mol

所以cAMP→AMP的△Go′=-15.61 kJ/mol+(-33.44 kJ/mol)=-49.05 kJ/mol


61.------------------返回试题

[答] 在反应的起始阶段葡萄糖-6-磷酸的浓度为0.1mol/L,葡萄糖-1-磷酸的浓度为0,平衡后葡萄糖-6-磷酸的浓度为 0.1-X(mol/L),葡萄糖-1-磷酸的浓度为X(mol/L)

根据△Go′=-2.303RT㏒Keq′,得: ㏒Keq′=7.5/-2.303×8.314×10-3×298=-1.32 

查反对数表得,Keq′=4.8×10-2 

由 Keq′=X/(0.1-X) ,得:0.1×4.8×10-2-4.8×10-2 X = X

即:X=0.004mol/L, 0.1- X=0.096mol/L

反应后葡萄糖-6-磷酸和葡萄糖-1-磷酸的最终浓度分别是0.096 mol/L和0.004 mol/L。


62.------------------返回试题

[答] 组织中没有鱼藤酮时:1摩尔葡萄糖→2摩尔丙酮酸,净生成2摩尔ATP并有2摩尔NADH?H+产生(细胞质中生成);2摩尔丙酮酸→2摩尔乙酰辅酶A+2摩尔CO2, 生成2摩尔NADH?H+;2摩尔乙酰辅酶A→4摩尔CO2,共生成6摩尔NADH?H+、2摩尔FADH2、2摩尔GTP。对肝脏细胞而言,细胞质中生成的2摩尔NADH?H+,是通过苹果酸-天冬氨酸穿梭进入线粒体的,进入线粒体的依然是2摩尔NADH?H+。NADH?H+生物氧化时的磷氧比值为2.5,FADH2的磷氧比值为1.5,所以葡萄糖彻底氧化产生的ATP为(4+6)2.5+2×1.5+4=32摩尔。如果组织中有鱼藤酮存在,生成的NADH?H+不产生ATP,所以ATP为2×1.5+4=7摩尔。


63.------------------返回试题

[答] 电子传递抑制剂可使电子传递链的某一部位阻断,电子不能传递,线粒体内膜两侧的质子浓度差不能形成,氧的消耗停止,ATP自然也不能合成。氧化磷酸化抑制剂并不直接抑制电子传递,它的作用是抑制ATP酶,使ATP合成停止,由于线粒体内膜两侧存在较高的质子浓度差,电子传递和氧的消耗也被抑制。氧化磷酸化作用解偶联剂使电子传递和氧化磷酸化两个过程分离,结果是电子传递失去控制,氧的消耗增加,但不能形成线粒体内膜两侧的质子浓度差,ATP也无法合成。


64.------------------返回试题

[答] ① 乳酸彻底氧化成CO2和H2O的途径如下:

乳酸+NAD→丙酮酸+NADH?H+(乳酸脱氢酶),此反应在细胞溶胶(细胞浆)中进行。在肝脏细胞匀浆体系中,细胞溶胶中生成的NADH是通过苹果酸-天冬氨酸穿梭进入线粒体内氧化。

丙酮酸+NAD→乙酰辅酶A + NADH?H+ (线粒体,丙酮酸脱氢酶系)

乙酰辅酶进入三羧酸循环:(线粒体,三羧酸循环相关酶)

乙酰辅酶A+3 NAD+ +FAD++GDP +Pi→2摩尔CO2 +3 NADH?H+ +FADH2+GTP

1摩尔乳酸彻底氧化成CO2和H2O生成ATP的摩尔数为:5×2.5+1×1.5+1(GTP)=15摩尔 

② 柠檬酸彻底氧化成CO2和H2O的途径如下:

柠檬酸首先沿三羧酸循环生成草酰乙酸,该过程共进行4次脱氢,生成3 摩尔NADH?H+、1摩尔FADH2、1摩尔GTP(线粒体,三羧酸循环相关酶)

草酰乙酸暂时脱离三羧酸循环,脱羧生成丙酮酸。丙酮酸氧化脱羧转变成乙酰辅酶A:

丙酮酸 +NAD→乙酰辅酶A + NADH?H+(线粒体丙酮酸脱氢酶系)

乙酰辅酶进入三羧酸循环氧化:乙酰辅酶A+ 3 NAD+ +FAD++GDP +Pi→2摩尔CO2 +3 NADH?H+ +FADH2+GTP

FADH2呼吸链的磷氧比值为1.5,NADH呼吸链的磷氧比值为2.5,1摩尔柠檬酸彻底氧化成CO2和H2O生成ATP的摩尔数为:7×2.5+2×1.5+2(GTP)=22.5摩尔 

③ 磷酸稀醇式丙酮酸彻底氧化成CO2和H2O的途径如下:

磷酸稀醇式丙酮 + ADP +Pi→丙酮酸 + ATP;丙酮酸+NAD→乙酰辅酶A + NADH?H+

乙酰辅酶进入三羧酸循环:(线粒体三羧酸循环相关酶)

乙酰辅酶A+ 3 NAD+ +FAD++GDP +Pi→2摩尔CO2 +3 NADH?H+ +FADH2+GTP

1摩尔磷酸稀醇式丙酮酸彻底氧化成CO2和H2O生成ATP的摩尔数为:4×2.5+1×1.5+2(GTP+ATP)=13.5摩尔 


65.------------------返回试题

[答] ATP(腺苷-5′-三磷酸,简称三磷酸腺苷)是高能磷酸化合物的典型代表,一个ATP分子由一分子腺嘌呤、一分子核糖、和三个相连的磷酸基团组成。三个磷酸基团依次与核糖5′-羟基形成磷酸酯,分别称为α、β、γ磷酸基团,α磷酸基团与腺苷之间的磷酸酯键为普通磷酯键,而β、γ磷酸基团之间和β、α磷酸基团之间的磷酸酯键为高能磷酸键,β、γ磷酸基团在水解或者基团转移时都能释放出30.48 kJ/mol的自由能,而普通磷酯键在水解或者基团转移时能释放出的自由能在20 kJ/mol以下,在生物机体内细胞内还有一些高能化合物,在磷酸基团水解或者基团转移时能释放出40~60 kJ/mol的自由能,甚至更多。这些高能化合物(如磷酸肌酸、磷酸稀醇式丙酮酸等)可将其高能磷酸基团转移给ADP,生成的 ATP分子又可将其高能磷酸基团转移给其它化合物使之获得能量,所以ATP不仅是机体细胞最直接的能源,同时ATP在能量的传递中起中间体的作用。


66.------------------返回试题

[答] (1) 二硝基苯酚是一种氧化磷酸化的解偶剂,它可以将质子从膜间隙带入线粒体基质,从而破坏质子梯度,使 ATP的合成停止。电子传递链将质子泵出线粒体的过程被加强,从而加快了氧的消耗。(2) HCN阻止了电子从细胞色素氧化酶到氧的传递,从而使氧的消耗停止,ATP的合成受阻。(3) 寡霉素阻断质子通过F1F0-ATP酶的通道,使ATP的合成受阻。由于质子泵出线粒体需要克服更高的能障,故电子传递被抑制,氧的消耗停止。随后加入二硝基苯酚,ATP的合成仍然因为寡霉素存在而被抑制,但质子梯度被二硝基苯酚破坏,所以消除了寡霉素对电子传递的抑制,氧的消耗继续进行,只是没有ATP的合成。


67.------------------返回试题

[答] 经代谢转化,葡萄糖第二位标记的14C出现在丙酮酸的羰基上,即 CH3-﹡CO-COOH;进一步氧化产生的CH3-﹡CO-CoA进入三羧酸循环后,经第一轮循环标记碳原子全部进入草酰乙酸,形成两种异构体: HOO﹡C-CO-CH2-COOH 和HOO﹡C-CH2-CO-COOH,在第二轮三羧酸循环中,两种异构体中的标记碳原子都可在脱羧反应中以二氧化碳释放。


68.------------------返回试题

[答] 在糖酵解中,葡萄糖→葡萄糖-6-磷酸、果糖-6-磷酸→果糖-1,6-二磷酸、磷酸烯醇式丙酮酸→丙酮酸三个不可逆反应位点分别由己糖激酶、磷酸果糖激酶、丙酮酸激酶催化;在糖异生中,葡萄糖-6-磷酸→葡萄糖、果糖-1,6-二磷酸→果糖-6-磷酸、丙酮酸→草酰乙酸→磷酸烯醇式丙酮酸三个不可逆反应位点分别由葡萄糖-6-磷酸酶、果糖-1,6-二磷酸酶、丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶催化。催化果糖-6-磷酸与果糖-1,6-二磷酸转化的酶是关键的调控酶。在糖酵解中,磷酸果糖激酶的正效应物为AMP、果糖-2,6-二磷酸,负效应物为柠檬酸、ATP,胰高血糖素可以通过共价修饰使果糖-2,6-二磷酸水平降低,从而降低糖酵解速率;在糖异生作用中,果糖-1,6-二磷酸酶催化果糖-1,6-二磷酸转变成果糖-6-磷酸,该酶的正效应物为ATP、柠檬酸,而负效应物为AMP、果糖-2,6-二磷酸。胰高血糖素通过共价修饰使果糖-2,6-二磷酸水平降低,促进糖异生作用。可见两种酶的效应物对两条途径的调节正好相反,这种协调控制保证了糖酵解和糖异生途径一条开放时,另一条关闭,从而避免了无效循环。


69.------------------返回试题

[答] 磷酸稀醇式丙酮酸+ADP+Pi→丙酮酸+ATP,△G0'=-31.38 kJ/mol

△Go,=-2.303RT㏒Keq=-2.303×8.31×10-3 kJ/mol?K×298 K×㏒Keq

即:-31.38 kJ/mol=-2.303×8.31×10-3kJ/mol?K×298 K×㏒Keq

㏒Keq=5.5,查反对数表得:Keq=3.16×105

Keq=[ATP] ×[丙酮酸]/[ 磷酸稀醇式丙酮酸] × [ADP]

[丙酮酸]/[ 磷酸稀醇式丙酮酸]=10÷ Keq=10÷3.16×105=3.16×10-5

[ 磷酸稀醇式丙酮酸]/[丙酮酸] =1/3.16×10-5=3.16×104


70.------------------返回试题

[答] 首先,2摩尔丙酮酸 +2CO2+2ATP→2草酰乙酸+2ADP+2Pi; 2草酰乙酸+2GTP→2磷酸稀醇式丙酮酸+2GDP+2CO2;其次,2摩尔磷酸稀醇式丙酮酸沿糖酵解途径逆行至转变成2摩尔甘油醛-3-磷酸,其中在甘油酸-3-磷酸转变成甘油酸-1,3-二磷酸过程中,消耗2摩尔ATP;甘油酸-1,3-二磷酸转变成甘油醛-3-磷酸中,必须供给2摩尔的NADH?H+。最后,2摩尔的磷酸丙糖先后在醛羧酶、果糖-1,6-二磷酸酶、异构酶、葡萄糖-6-磷酸酶作用下,生成1摩尔葡萄糖,该过程无能量的产生与消耗。从上述三阶段可看出,2摩尔丙酮酸转化成1摩尔葡萄糖需要提供6摩尔高能磷酸化合物,其中4摩尔为ATP,2摩尔为GTP。


71.------------------返回试题

[答] 甘油 + ATP→α-磷酸甘油 + ADP;α-磷酸甘油 + NAD+→ NADH?H+ + 磷酸二羟丙酮;磷酸二羟丙酮→甘油醛-3-磷酸;甘油醛-3-磷酸 + NAD++ Pi→甘油酸1,3-二磷酸 + NADH?H+;甘油酸1,3-二磷酸 + ADP→甘油酸-3-磷酸 + ATP;甘油酸-3-磷酸→甘油酸-2-磷酸→磷酸稀醇式丙酮酸;磷酸稀醇式丙酮酸+ ADP→ 丙酮酸 + ATP;丙酮酸 + NAD+→乙酰辅酶A + NADH?H+ + CO2;然后进入乙酰辅酶A三羧酸循环彻底氧化,经过4次脱氢反应生成3摩尔NADH?H+、1摩尔FADH2、以及2摩尔CO2,并发生一次底物水平磷酸化,生成1摩尔GTP。依据生物氧化时每1摩尔NADH?H+和1摩尔FADH2 分别生成2.5摩尔、1.5,1摩尔甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5


72.------------------返回试题

[答](1)血糖的来源:食物淀粉的消化吸收,为血糖的主要来源;贮存的肝糖原分解,是空腹时血糖的主要来源;非糖物质如甘油、乳酸、大多数氨基酸等通过糖异生转变而来。(2)血糖的去路:糖的氧化分解供能,是糖的主要去路;在肝、肌肉等组织合成糖原,是糖的贮存形式;转变为非糖物质,如脂肪、非必需氨基酸等;转变成其他糖类及衍生物如核糖、糖蛋白等;血糖过高时可由尿排出。(3)人体血糖水平的稳定:主要靠胰岛素、胰高血糖素、肾上腺素等激素来调节。血糖水平低时,刺激胰高血糖素、肾上腺素的分泌,促进糖原分解和糖异生作用、抑制葡萄糖的氧化分解,使血糖水平升高。当血糖水平较高时,刺激胰岛素分泌,促进糖原合成、抑制糖异生作用,加快葡萄糖的氧化分解,从而使血糖水平下降。


73.------------------返回试题

[答] 磷酸果糖激酶(PFK)是一种调节酶,又是一种别构酶。ATP是磷酸果糖激酶的底物,也是别构抑制剂。在磷酸果糖激酶上有两个ATP的结合位点,即底物结合位点和调节位点。当机体能量供应充足(ATP浓度较高)时,ATP除了和底物结合位点结合外,还和调节位点结合,是酶构象发生改变,使酶活性抑制。反之机体能量供应不足(ATP浓度较低),ATP主要与底物结合位点结合,酶活性很少受到抑制。


74.------------------返回试题

[答](a)ATP→ ADP + Pi反应的标准自由能变化△Go′=-30.50 KJ/mol ,那么ADP+ Pi→ATP反应的标准自由能变化△Go′=+30.50 kJ/mol, 因此,当ATP、ADP和Pi的稳态浓度分别为3mmol/L、0.1 mmol/L、10 mmol/L时 ,ADP + Pi→ATP反应的自由能变化为:

△G =△Go′+2.303RTlgKeq

=30.50 +2.303×8.31×10-3×298×lg[3×10-3/(0.1×10-3×10×10-3)]

=30.50+5.71×3.4771 =50.35 (kJ/mol)

(b)如果此时△G全部合成ATP,体系自由能的变化为负,再根据 -△Go′=- nF△E0′得:

-50.35=-2×96.49×△E0′,△E0′=50.35÷(2×96.49)=0.26 V


75.------------------返回试题

[答] knoop分别在偶数和奇数碳的脂肪酸分子的末端甲基接上苯基,用这种带“示踪物”的脂肪酸喂狗,示踪物苯基在体内不被代谢,而以某一特定的有机化合物随尿排出。Knoop发现,偶数碳的脂肪酸被标记后喂狗,尿液中出现的是苯乙酸的衍生物苯乙尿酸,奇数碳原子的脂肪酸被标记后喂狗,尿液中出现的苯甲酸的衍生物苯甲尿酸。他由此推论:脂肪酸氧化是从羧基端的β-碳原子开始的,每次氧化降解一个2碳单元的片段。他的假说与现代β-氧化学说的相同之处是降解始发于羧基端的第二位(β-位)碳原子,在这一处断裂切掉两个碳原子单元。与现代β-氧化学说的不同之处是:β-氧化的起始阶段需要水解ATP活化脂肪酸, 以脂酰CoA的形式进行氧化,反应的中间产物全部都是结合在CoA上,反应过程是由多种酶协同催化的,切掉的两个碳原子单元是乙酰CoA,而不是乙酸分子,反应过程中脱下来的氢能够经呼吸链的传递生成ATP。


76.------------------返回试题

[答] (1)一分子硬脂酸需要经过8轮β氧化,生成9个乙酰CoA,8个FADH2 和8NADH,9个乙酰CoA可生成ATP:10×9=90个;8个FADH2可生成ATP :1.5×8=12个;8个NADH可生成ATP:2.5×8=20个;以上总计为122个ATP,但是硬脂酸活化为硬脂酰CoA时消耗了两个高能磷酸键,一分子硬脂肪酸净生成120个ATP。(2)120个ATP水解的标准自由能为120×(-30.54)KJ=-3664.8KJ,硬脂肪酸的相对分子质量为256。故1克硬脂肪酸彻底氧化产生的自由能为-3664.8/256=-13.5KJ。


77.------------------返回试题

[答] (1)酮症:在糖尿病或糖供给障碍等病理状态下,胰岛素分泌减少或作用低下而胰高血糖素、肾上腺素等分泌上升,导致脂肪动员增强,脂肪酸在肝内的分解增多,酮体的生成也增多,同时,由于主要来源于糖代谢的丙酮酸减少,使草酰乙酸也减少,导致了乙酰CoA的堆积,此时肝外组织的酮体氧化作用减少,结果就出现了酮体过多积累在血中的酮症。 (2)脂肪肝:肝细胞内的脂肪来源多,去路少导致脂肪积存。原因有:①最多见的是肝功能低下,合成脂蛋白能力下降,导致肝内脂肪运出障碍;②糖代谢障碍导致脂肪动员增强,进入肝内的脂肪酸增多;③肝细胞内用于合成脂蛋白的磷脂缺乏;④患肝炎后,活动过少使能量消耗减少,糖转变成脂肪而存积。(3)动脉粥样硬化:血浆中LDL增多或HDL下降均可使血浆中胆固醇容易在动脉内膜沉积,久之则导致动脉粥样硬化。


78.------------------返回试题

[答] 在植物体内,脂肪酸合酶是由不同的七种多肽链的聚合体和ACP组成的多酶体系。酵母中,脂肪酸合酶由酰基载体蛋白(ACP)和6个酶构成,这6个酶定位为两个多功能多肽链,它们分别是乙酰CoA-ACP转酰酶、丙二酸单酰CoA-ACP转酰酶、β-酮酰-ACP合酶、β-酮酰-ACP还原酶、β-羟酰-ACP脱水酶、烯酰-ACP还原酶;动物中,脂肪酸合酶包含有7个酶和一个ACP,其中6个酶和酵母中的相同,另一个为软脂酰-ACP硫酯酶。ACP是“acyl carrier proterin”的简写符号,是一个相对分子质量低的蛋白质,它没有酶的活性,在脂肪酸合成中犹如CoA在脂肪酸降解中的作用,仅作为脂酰基的载体。它的辅基是ACP的丝氨酸残基上结合的4′-磷酸泛酰巯基乙胺,其末端的-SH基是携带脂酰基的功能部位。ACP可把脂酰基从一个酶转移到另一个酶,因而被称作 “酰基载体蛋白”。在脂肪酸降解中,同样的磷酸泛酰巯基乙胺又是CoA的一部分。这个长链的4′-磷酸泛酰巯基乙胺分子犹如“摆臂”,把底物在酶复合体上从一处的催化中心转移到另一处。


79.------------------返回试题

[答] 脂肪酸氧化的限速步骤是脂肪酸从胞质到线粒体的转运,所以肉碱-酰基转移酶Ⅰ是脂肪酸氧化的限速酶。脂肪酸合成的限速酶是乙酰CoA羧化酶,催化乙酰CoA生成丙二酸单酰CoA。丙二酸单酰CoA可促进脂肪酸合成,抑制肉碱-酰基转移酶Ⅰ的活性,这样当脂肪酸合成旺盛时,脂肪酸的分解必然会停止,如此进行两条相反途径的协同调控。


80.------------------返回试题

[答] 脂肪酸的生物合成,植物中是在叶绿体及前质体中进行,合成4~16碳及16碳以上的饱和脂肪酸。动物是在胞液中进行,只合成16碳饱和脂肪酸,长于16碳的脂肪酸是在内质网或线粒体中合成。就胞液中16碳饱和脂肪酸的合成过程来看,与β-氧化过程有相似之处,但是合成过程不是β-氧化过程的逆转, 脂肪酸合成和脂肪酸β氧化的异同可归纳如下:(1)两种途径发生的场所不同,脂肪酸合成主要发生于细胞浆中,分解发生于线粒体;(2)两种途径都有一个中间体与载体相连,脂肪酸合成为ACP,分解为CoA;(3)在两种途径都有4步反应,脂肪酸合成是缩合,还原,脱水和还原,脂肪酸分解是氧化,水合,氧化和裂解。虽然从化学途径二者互为逆反应。但他们的反应历程不同,所用的辅助因子也不同;(4)两种途径都有原料转运机制,在脂肪酸合成中,有三羧酸转运机制将乙酰CoA从线粒体转运到细胞浆,在降解中,有肉碱载体系统将脂酰CoA从细胞浆转运到线粒体;(5)两种途径都以脂肪酸链的逐次轮番的变化为特色,在脂肪酸合成中,脂肪酸链获得2碳单位而成功延伸,在降解中则是以乙酰CoA形式的2碳单位离去,以实现脂肪酸链的缩短;(6)脂肪酸合成时,是以分子的甲基一端开始到羧基端为止,降解则是相反的方向,羧基的离去为第一步。(7)羟酯基中间体在脂肪酸合成中是D-构型,但是在降解中为L-构型;(8)脂肪酸合成由还原途径构成,需要NADPH参与,脂肪酸分解由氧化途径构成,需要FAD和NAD+的参与;(9)在动物体中,脂肪酸合酶是一条多肽链构成的多功能酶,而脂肪酸的分解是由多种酶协同催化的。以上是胞液中脂肪酸合成过程和在线粒体中β-氧化作用的重要异同之处。在线粒体中,脂肪酸的合成反应是β-氧化反应的逆过程。


81.------------------返回试题

[答] 血浆脂蛋白有两种分类法:超速离心法和电泳法。超速离心法可根据脂蛋白的密度不同分为四类:乳糜微粒(CM),极低密度脂蛋白(VLDL),低密度脂蛋白(LDL)和高密度脂蛋白(HDL)。电泳法主要根据脂蛋白的形状、大小和带电多少不同而在电场中有不同迁移率分为:α-脂蛋白、前β-脂蛋白、β-脂蛋白和乳糜微粒四类。两种分类法相对应的名称及各种血浆脂蛋白的来源、化学组成特点和主要生理功能见下表。

分类 电泳分类 CM preβ-LP β-LP α-LP

密度分类 CM VLDL LDL HDL

来源 小肠粘膜细胞 肝细胞 血浆 肝、小肠

化学组成特点

主要生理功能 富含TG(占80%~95%) 富含TG(占60%~70%) 富含Ch(占48%~50%) 富含蛋白质(占80%~95%)

转运外源性TG及Ch 转运内源性TG 转运内源性Ch 逆向转运Ch


82.------------------返回试题

[答] 乙酰-CoA羧化酶在脂肪酸合成中将乙酰-CoA转化为丙二酸单酰-CoA,后者是脂肪酸合成的重要起始物之一,乙酰-CoA羧化酶催化的反应是脂肪酸合成中的限速步骤,是脂肪酸合成调控的关键所在,在脊椎动物中,脂肪酸合成的主要产物,软脂酰-CoA使该酶的反馈抑制剂,当线粒体乙酰-CoA的浓度增高,ATP也增高时,柠檬酸从线粒体释放出来,转化为细胞液乙酰CoA,同时成为乙酰-CoA羧化酶活化的别构信号。乙酰-CoA羧化酶还受由胰高血糖素和肾上腺素皮质激素激发的磷酸化修饰的抑制。它的活化型为乙酰-CoA羧化酶的聚合物,当磷酸化时这个聚合物解离成为单体,遂失去活性。可以说,乙酰-CoA羧化酶的活性取决于二者平衡的调控,柠檬酸把平衡引向聚合一侧,也就是促进脂肪酸合成,软脂酰-CoA则把平衡引向单体一侧,就是抑制脂肪酸合成,软脂酰-CoA是脂肪酸合成的产物,它的作用可以称为反馈抑制。


83.------------------返回试题

[答] 血浆脂蛋白中的蛋白质部分称载脂蛋白(apo),在肝和小肠粘膜细胞中合成。至今已从人血浆中分离出18种apo,主要包括:apoA、B、C、D、E等5类。其中,apoA又分为AI、AⅡ、AIV;apoB又分为B100及B48 ;apoC分为CI、CⅡ、CⅢ,CⅢ根据其所含唾液酸的数目又分为CⅢ0、CⅢ1、和CⅢ2; apoE根据其组成及等电点不同分为El、E3、E4。绝大多数apo的一级结构已经阐明。不同脂蛋白所含的apo不同。载脂蛋白在分子结构上具有一定特点,往往含有较多的双性α-螺旋结构,分子的一侧极性较高,可与水溶剂及磷脂或胆固醇极性区结合,构成脂蛋白的亲水面,分子的另一侧极性较低,可与非极性的脂类结合,构成脂蛋白的疏水核心区。apo的主要功能如下:① 结合和转运脂质,稳定脂蛋白结构。apo大多具有双性α-螺旋结构(amphipathic α-helix),沿螺旋纵轴同时存在亲脂非极性面和亲水的极性面,有利于结合脂质和稳定脂蛋白结构。②调节脂蛋白代谢关键酶的活性,如apoCⅡ是脂蛋白脂肪酶(LPL)不可缺少的激活剂;apoAI则为卵磷脂胆固醇脂酰转移酶(LCAT)的激活剂;apoAⅡ有激活肝脂肪酶(HL)的作用等。③参与脂蛋白受体的识别,如apoB100及apoE参与LDL受体的识别;apoAI参与HDL受体的识别;apoE参与apoE受体的识别等。由于各种脂蛋白主要通过受体途径代谢,因此apo影响和决定着脂蛋白的代谢。④参与脂蛋白间的脂质交换,脂质交换蛋白(LTP)包括:胆固醇酯转运蛋白(CETP),促进CE从HDL转移至VLDL-IDL及LDL,磷脂转运蛋白(PTP),促进PL从CM和VLDL转移至HDL。


84.------------------返回试题

[答] 影响和调节胆固醇合成主要因素是:①饥饿与禁食使HMG-CoA还原酶合成减少,活性降低.可抑制肝合成胆固醇。②摄取高糖,高饱和脂肪酸膳食后,肝HMG-CoA还原酶活性增高,胆固醇合成增多。③胰岛素能使HMG-CoA还原酶合成增多,从而增加胆固醇合成。④胰高血糖素及皮质醇能抑制HMGCoA还原酶,从而减少胆固醇合成。


85.------------------返回试题

[答] 乳酸完全氧化时,首先转变成丙酮酸,然后丙酮酸转变成乙酰辅酶A,乙酰辅酶A进入三羧酸循环完全氧化。乳酸 + NAD→丙酮酸+NADH?H+ (细胞质中进行),丙酮酸+ NAD→乙酰辅酶A+ NADH?H+ (线粒体中进行),1摩尔乙酰辅酶A进入三羧酸循环完全氧化生成2摩尔CO2 、3摩尔NADH?H+、1摩尔FADH2 、1摩尔GTP。1摩尔乳酸完全氧化产生ATP数=2.5×5+1.5×1+1=15;丙氨酸氧化时,首先1摩尔丙氨酸与1摩尔α-酮戊二酸在转氨酶作用下生成1摩尔丙酮酸、1摩尔谷氨酸。谷氨酸脱氢重新转变成α-酮戊二酸并生成1摩尔NH4+ 和1摩尔NADH?H+。丙酮酸氧化过程同上述,1摩尔丙酮酸完全氧化产能2.5×4 +1.5×1+1=12.5摩尔的ATP。另外从丙氨酸上脱下的氨对机体是有毒害的,必须转化成尿素给予清除。合成1摩尔尿素需要2摩尔的氨、1摩尔CO2、并且消耗4摩尔的ATP(实际消耗3摩尔ATP,断裂4个高能磷酸键),这样清除1摩尔的氨,相当于消耗2摩尔ATP,所以1摩尔丙氨酸完全氧化可产生ATP数=12.5+2.5-2=13摩尔;通过计算可知等摩尔的丙氨酸、乳酸和丙酮酸完全氧化时,乳酸产能高于丙氨酸,丙氨酸又高于丙酮酸。


86.------------------返回试题

[答] 三羧酸循环的中间体α-酮戊二酸可为谷氨酸族氨基酸提供骨架原子,包括谷氨酸、谷氨酰胺、鸟氨酸、精氨酸;中间体草酰乙酸可为天冬氨酸、天冬酰胺、甲硫氨酸、苏氨酸、赖氨酸提供骨架原子。糖酵解中的中间体丙酮酸和甘油酸-3-磷酸是丙氨酸、缬氨酸、亮氨酸、甘氨酸、半胱氨酸碳骨架的来源。糖酵解中的磷酸烯醇式丙酮酸和戊糖磷酸途径中的赤鲜糖-4-磷酸是植物、微生物体内合成苯丙氨酸、色氨酸和酪氨酸碳骨架的直接来源;戊糖磷酸途径生成的核糖-5-磷酸是组氨酸合成的重要前体。


87.------------------返回试题

[答] 尿素循环中生成的延胡索酸需经过三羧酸循环转变成草酰乙酸,然后通过转氨基作用形成天冬氨酸,再进入尿素循环中;三羧酸循环提供尿素循环所需的ATP和CO2


88.------------------返回试题

[答] 1mol谷氨酸氧化脱氨基产生1 mol NADH,、1摩尔a-酮戊二酸和1摩尔氨,a-酮戊二酸进入三羧酸循环转化变成草酰乙酸,伴随产生2mol NADH?H+,1mol FADH2 和 1mol ATP; 草酰乙酸脱羧生成丙酮酸,丙酮酸氧化脱羧生产1摩尔乙酰CoA和1摩尔NADH?H+,1摩尔乙酰CoA进一步氧化成CO2、 H2O,可产生10 mol ATP。这样1mol谷氨酸氧化成CO2、 H2O和氨形成ATP总量为10 +3×2.5+ 1×1.5+1=20 mol ATP, NH3 合成尿素,消耗了3 mol ATP,故谷氨酸彻底氧化成CO2、 H2O和尿素同时净合成17mol ATP。


89.------------------返回试题

[答] 细胞内核苷酸合成有两条途径,一是从头合成途径,另一条是补救途径。对于B细胞,由于不能在培养基上繁殖,所以未融合的B细胞不能在培养基上繁殖。对于肿瘤细胞,因为是HGPRT缺陷型,因而它不能通过补救途径合成核苷酸;又因为选择性培养基HAT中含氨甲蝶呤,它是叶酸的拮抗剂,叶酸是嘌呤和嘧啶核苷酸从头合成途径中转移一碳单位的辅酶(四氢叶酸)的来源,所以氨甲蝶呤抑制了核苷酸的从头合成途径,这样未融合的肿瘤细胞也不能在选择性培养基上生长和繁殖,只有融合细胞具有了双亲的遗传性,才能在HAT选择性培养基中利用补救途径合成核苷酸,从而生长和繁殖。


90.------------------返回试题

[答] 通过放射自显影方法,在复制开始时,先用低放射性的3H-胸腺嘧啶核苷标记大肠杆菌。经数分钟后,再转移到含有高放射性的3H -胸腺嘧啶核苷的培养基中继续标记。这样在放射自显影图上,复制起始区的放射性标记密度比较低,感光还原的银颗粒密度就较低;继续合成区标记密度较高,银颗粒密度也较高。对于枯草杆菌、某些噬菌体和高等真核细胞的染色体等许多DNA来说,都是双向复制,所以银颗粒的密度分布应该是中间密度低,两端密度高;而对于大肠杆菌噬菌体P2、质体和真核细胞线粒体等某些DNA来说,复制是单向的,则银颗粒的密度分布应该是一端高、一端低。


生物化学答疑库(中)的评论 (共 条)

分享到微博请遵守国家法律