欢迎光临散文网 会员登陆 & 注册

Electric Currents||Electromagnetism

2021-02-24 11:12 作者:湮灭的末影狐  | 我要投稿

//Well, our Italiano professor's spoken English is... a little hard to understand...

//In this chapter we discuss charge in motion.

4.1 Electric current and current density

An electric current is charge in motion. The electric current in a wire is the amount of charge passing through it per unit time.

I%3D%5Cfrac%7B%5CDelta%20Q%7D%7B%5CDelta%20t%7D

It can also be expressed as the flux of electric current density:

I%3D%5Ciint_S%20%5Cvec%20j%20%5Ccdot%20%5Cmathrm%20d%5Cvec%20S

and electric current density is determined by the density of charge carriers n, the amount of charge on each carrier q, and the average speed of the carriers %5Cvec%20v.

%5Cvec%20j%20%3D%20nq%5Cvec%20v

4.2 Steady currents and charge conservation

We've mentioned conservation of charge:

%5Cnabla%5Ccdot%20%5Cvec%20j%20%2B%5Cfrac%7B%5Cpartial%20%5Crho%7D%7B%5Cpartial%20t%7D%3D0

And in a steady or stationary current system, we know the charge density can't grow infinite,

%5Cnabla%5Ccdot%5Cvec%20j%3D0

4.3 Electrical conductivity and Ohm's law

We know in electrostatic cases %5Cvec%20E in a conductor must be 0. But when an electric field %5Cvec%20E exists inside a conductor and pushes free charges (electrons) inside, the result is an electric current in the direction of %5Cvec%20E. (And that's not electrostatic case.)

%5Cvec%20j%20%3D%20%5Csigma%20%5Cvec%20E

That's the differential form of Ohm's law. %5Csigma%20 is called the conductivity of the material.

We're more familiar to its original form:

V%3DIR

Generally the rule above should be written as

%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0Aj_%7Bx%7D%20%5C%5C%0Aj_%7By%7D%20%5C%5C%0Aj_%7Bz%7D%0A%5Cend%7Barray%7D%5Cright)%3D%5Cleft(%5Cbegin%7Barray%7D%7Bccc%7D%0A%5Csigma_%7Bx%20x%7D%20%26%20%5Csigma_%7Bx%20y%7D%20%26%20%5Csigma_%7Bx%20z%7D%20%5C%5C%0A%5Csigma_%7By%20x%7D%20%26%20%5Csigma_%7By%20y%7D%20%26%20%5Csigma_%7By%20z%7D%20%5C%5C%0A%5Csigma_%7Bz%20x%7D%20%26%20%5Csigma_%7Bz%20y%7D%20%26%20%5Csigma_%7Bz%20z%7D%0A%5Cend%7Barray%7D%5Cright)%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0AE_%7Bx%7D%20%5C%5C%0AE_%7By%7D%20%5C%5C%0AE_%7Bz%7D%0A%5Cend%7Barray%7D%5Cright)

Where the nine factors make up a tensor, which here is just a matrix.

And this matrix must be symmetric: %5Csigma_%7Bxy%7D%3D%5Csigma_%7Byx%7D, for example.

Further more, by a suitable orientation of the xyz axis, the tensor will be diagonal:

%5Cbegin%7Barray%7D%7Bc%7D%0Aj_x%3D%5Csigma_%7Bxx%7DE_x%5C%5C%0Aj_y%3D%5Csigma_%7Byy%7DE_y%5C%5C%0Aj_z%3D%5Csigma_%7Bzz%7DE_z%0A%5Cend%7Barray%7D

(电导率张量一定是对称的,因此可以对角化,当选取该材料晶体主轴时,电导率张量必为对角的。)

To calculate the resistance R of a rod, we have

R%3D%5Cfrac%7BL%7D%7B%5Csigma%20S%7D

where L is the total length of the resistance, and S is its cross-sectional area of the rod.

Electric Currents||Electromagnetism的评论 (共 条)

分享到微博请遵守国家法律