CVPR2022 | 直接从点云提取3D基元
作者:PCIPG-ka | 来源:3D视觉工坊
在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。
添加微信:dddvisiona,备注:3D点云,拉你入群。文末附行业细分群。
我们的日常生活环境充满了经过精心设计的计算机辅助设计制造的物体。这使得在需要物理对象的副本或变体但相应的CAD模型不可用的情况下,进行逆向工程成为一个重要的工作流程。这种情况经常发生在修复机械或将前数字时代制造的物体数字化时。为此,首先使用产生点云的3D传感器扫描对象,然后将其分解为一组一致的基元或曲面,这些基元或曲面可由现有的形状建模工具(如Fusion360 或SolidWorks)解析。这里也推荐「3D视觉工坊」新课程《彻底搞懂基于Open3D的点云处理教程!》。
1.介绍了一种新的方法,将三维重建任务建模为一个挤出圆柱体分解问题,使其非常适合CAD建模。2.构建了一个神经网络,通过学习几何代理将输入点云分解成一组挤压筒,然后利用这些几何代理估计可微的闭式公式中的挤压参数。3.在两个现有的CAD数据集Fusion Gallery 和DeepCAD上进行了定量和定性的验证
我们首先定义一个运算符 :,该运算符通过将给定向量 e 与 z 轴对齐,将该点投影到 xy 平面上,然后将另一个向量 c 居中以原点为中心,将 3D 点映射到 2D 点 草图:将此运算符应用于挤出圆柱体的基点,以获得圆柱体的未归一化草图s拉伸比例:通过取草图中最远的点到原点的距离来计算拉伸比例预测草图表示,每个线段 k 的桶点投影到由 (ˆ ck, ˆ ek) 定义的平面上并按 ˆ sk 缩放 S归一化草图:使用拉伸比例和通过缩放未归一化草图获得的归一化草图:会出现一些问题:很难通过这些点去简单的拟合一个二维基元,很难保证输出草图是封闭的,并且不自相交,而且同一个 2D 草图可能有多种基本近似值,这阻碍了可学习性 c挤压中心:通过 P 的所有桶点的平均值来估计由于我们估计的挤压轴是无方向的,因此我们通过从方程(4)中取绝对值的最大值来计算范围,并在两个方向上挤压计算出的范围,即:,
(i)实例分割 :定义将每个点分配给某个片段 k{1 ...K} 的可能性,其中每个片段都是挤压柱面(ii) 基础桶分割:实例化为 ,表示桶点,表示底座 (iii) 表面法线 N ∈ RNX3 对此,建立一个神经网络
现在给定预测的几何结果,M 紧凑且联合地组合了点 1)是基点或桶,以及 2)属于某个段的预测概率。然后,我们应用行式 softmax 将 ^ M 转换为行随机矩阵,其第 i 行表示点 pi 属于 2K 类之一
使用编码器函数 fβ 将草图的二维点云映射到全局的归一化草图潜在空间。
分割(seg)、基本点、桶点分类(bb)、法线(norm)和草图组成的多任务非凸目标来训练 G✓ 的参数 ✓正则化损失损失:1)预测法线和 GT 法线之间的绝对余弦距离进行惩罚:2)分割损失3)4)草图正则化损失
Point2Cyl,用于将 3D CAD 模型逆向工程为 CAD 设计者可解释和使用的基元。为了解决这个具有挑战性的离散连续分解问题,首先引入了挤压缸并开发了其拟合点集的基础。然后,提出了适合神经架构的可微分算法,该算法将点云划分为一组挤压缸。受益于一组代理预测,这些预测被证明可以注入正确的几何归纳偏差。与标准原始拟合相反,Point2Cyl 的输出允许形状变化,并且可以直接导入到现有的 CAD 建模器中,以进行进一步的重建、可视化和可重用性。
https://doi.org/10.48550/arXiv.2112.09329