欢迎光临散文网 会员登陆 & 注册

[Series] Ratio Test

2021-10-13 19:19 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

Part 1: Consider the following infinite series. Determine whether each infinite series converges or diverges.

(1)%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bn%7D%7B2%5En%7D%20

(2)%20%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B2%5En%7D%7Bn%7D%20


Part 2: Consider the following infinite series. Determine the radius of convergence and the interval of convergence.


%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B4%5En%7D%7Bn%7D(x-3)%5En%20

【Solution】

Part 1
apply the ratio test to each series.
(1)
%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7Ba_%7Bn%2B1%7D%7D%7Ba_n%7D%20%5Cright%7C%20

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7B%5Cfrac%7Bn%2B1%7D%7B2%5E%7Bn%2B1%7D%7D%7D%7B%5Cfrac%7Bn%7D%7B2%5En%7D%7D%5Cright%7C

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7Bn%2B1%7D%7B2n%7D%20%5Cright%7C%20%3D%20%5Cfrac%7B1%7D%7B2%7D

Since this limit is less than 1, the series converges.

(2)
%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7Ba_%7Bn%2B1%7D%7D%7Ba_n%7D%20%5Cright%7C%20

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7B%5Cfrac%7B2%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%7D%7B%5Cfrac%7B2%5En%7D%7Bn%7D%7D%20%5Cright%7C%20

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7B2n%7D%7Bn%2B1%7D%20%5Cright%7C%20%3D%202%20

Since this limit is greater than 1, the series diverges.

Part 2
In order for the series to converge, the limit must be less than 1.

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7Ba_%7Bn%2B1%7D%7D%7Ba_n%7D%20%5Cright%7C%20%3C%201%20

For the series %20%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B4%5En%7D%7Bn%7D(x-3)%5En,

%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7B4%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%20%7B(x-3)%7D%5E%7Bn%2B1%7D%20%5Ccdot%20%5Cfrac%7Bn%7D%7B4%5En%20%7B(x-3)%7D%5E%7Bn%7D%7D%20%5Cright%7C%20%3C%201

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7B4n%7D%7Bn%2B1%7D(x-3)%20%5Cright%7C%20%3C%201

%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft%7C%20%5Cfrac%7B4n%7D%7Bn%2B1%7D%5Cright%7C%20%7Cx-3%7C%20%3C%201

%204%7Cx-3%7C%20%3C%201%20

%20%7Cx-3%7C%20%3C%20%5Cfrac%7B1%7D%7B4%7D

At this stage, we find that the radius of convergence is %20R%20%3D%20%5Cfrac%7B1%7D%7B4%7D. To solve for the interval of convergence, solve for x.


%5Cfrac%7B-1%7D%7B4%7D%20%3C%20x-3%20%3C%20%5Cfrac%7B1%7D%7B4%7D

%5Cfrac%7B11%7D%7B4%7D%20%3C%20x%20%3C%20%5Cfrac%7B13%7D%7B4%7D%20

This is as far as the ratio test allows us to conclude. To determine if each endpoint converges or not, we must apply other tests.

When x%3D%5Cfrac%7B11%7D%7B4%7D, the series becomes

%20%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B4%5En%7D%7Bn%7D%7B%5Cleft(%5Cfrac%7B-1%7D%7B4%7D%5Cright)%7D%5E%7Bn%7D

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B(-1)%5En%7D%7Bn%7D%20

By the alternating series test, this series converges.

When x%20%3D%20%5Cfrac%7B13%7D%7B4%7D, the series becomes

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B4%5En%7D%7Bn%7D%7B%5Cleft(%5Cfrac%7B1%7D%7B4%7D%5Cright)%7D%5E%7Bn%7D

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7Bn%7D

This is the Harmonic series, and it was shown here that it diverges. Therefore, the radius of convergence for

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B4%5En%7D%7Bn%7D(x-3)%5En

is actually %5Cfrac%7B11%7D%7B4%7D%20%5Cle%20x%20%3C%20%5Cfrac%7B13%7D%7B4%7D.


[Series] Ratio Test的评论 (共 条)

分享到微博请遵守国家法律