欢迎光临散文网 会员登陆 & 注册

唤醒干细胞,诱导多个组织再生!长期运动可让身体脱胎换骨

2023-06-02 13:16 作者:时光派官方  | 我要投稿


再生医学,指通过生物学或生物工程技术,使人体组织自我修复、更新的医疗手段。减缓、制止甚至逆转衰老过程则便是再生医学的目的之一。


近20年来,随着老龄化的加重,再生医学受到了政府的高度重视与支持,成为我国医学研究的热点,干细胞、人造组织、基因治疗等新技术层出不穷[1,2]。




但是,有研究者告诉我们,除了这些高大上的技术,跑步、游泳等日常运动也可以促进人体组织再生,让我们越活越年轻。


今年5月,上海大学肖俊杰教授团队联合海外机构发表了综述[3],阐述了长期运动对小鼠多个组织和系统再生的影响,并且通过对信号通路的研究,揭示了运动介导干细胞活化的机制。




肌肉


成人骨骼肌由肌细胞和少量肌肉干细胞组成,其中肌肉干细胞在成年后便处于静止状态,只有肌肉损伤或受到运动刺激时才会被激活[4]。


然而,在衰老等条件下,肌肉干细胞的调节因子被破坏,活化和再生能力被限制。例如钙结合蛋白异常表达,老化细胞外基质诱导肌肉干细胞转化为成纤维细胞,都损伤了肌肉干细胞的成肌能力[5]。


但是,运动能够改善衰老带来的肌肉萎缩,增加肌肉细胞增殖和活化,其机制包括AKT, MAPK等信号通路和代谢重编程。这些分子调节因子在年老和年轻小鼠体内发挥着不同作用。


例如,长期运动能够通过激活AKT通路、恢复细胞周期蛋白D1表达来促进老年小鼠肌肉干细胞增殖再生。而在年轻小鼠体内,运动则通过MAPK通路促进肌肉干细胞周期,还通过抑制AKT-mTOR活性和线粒体代谢、呼吸来保护肌肉干细胞增殖,增加干细胞更新能力[6-9]。


除了作用于肌肉干细胞外,运动还可以通过AMPK信号促进纤维成脂祖细胞(FAP)衰老,从而分泌促进肌肉干细胞增殖和分化的因子,引发“再生炎症”,激活肌肉再生[10]。


另外,抗阻训练也可提高蛋白质合成速率,增加肌肉质量和老年人肌纤维间干细胞数量[11,12]。



图注:运动介导肌肉再生的信号通路


神经


成年人大脑中,海马齿状回(DG)区域可以持续产生新神经元,调节学习、记忆和情绪[13]。研究表明,运动能够促进成人海马神经前体细胞(NPC)增殖和神经元分化[14,15],修复阿尔茨海默导致的认知障碍[16]。


此外,运动还会让老年小鼠神经干细胞恢复到年轻时的水平[17],改善小鼠痴呆[18],同时促进脑部形成新的突触,起到提高小鼠记忆力,改善帕金森动物运动能力等作用[19-21]。


以往研究发现,运动会产生很多促进神经再生的因子,如BDNF[13]、VEGF[22]、IGF1[23,24]、GH[25]、神经递质5 -羟色胺[26]和RGS6[29]。


其中BDNF能够穿过血脑屏障[27],即使产生于其它器官(如骨骼肌[28])也能诱导神经再生,并且可减轻阿尔茨海默病相关的脑内炎症[13]。


除了再生因子,运动还可以通过胞间作用来调节神经干细胞的增殖,例如通过血小板因子4 (PF4)激活血小板[11],从而促进神经再生。


但是,运动会诱导鼻咽癌相关通路Notch1的活性[12],目前机制尚不明确。



图注:运动介导神经再生的信号通路


心脏


到目前为止,研究者们还没有发现成年人心脏干细胞[30],而胚胎干细胞诱导形成心脏细胞的技术尚不成熟,因此,心脏细胞的再生是亟待突破的难点。


研究表明,小鼠长期进行跑轮、游泳等运动可促进现有心肌细胞增殖,进而促进内源性心肌再生[31,32]。


运动还可以促进心肌梗死、心肌炎等心脏损伤后的修复[33,34]。目前,运动被认为是保护心血管健康和改善心血管疾病(CVD)的有效方式[35,36]。


目前发现运动介导心脏再生的途径有IGF-PI3K-Akt轴[37-39]、ADAR2 - mir -34a - cyclin D1轴[22]、非编码RNA[40,41]、小RNA [21,24,42]、长链非编码RNA LncCPhar和lncExACT1等[43,44]。



图注:运动介导心脏再生的信号通路


血管和淋巴管


内皮祖细胞(EPC)是血管生成的关键细胞。研究发现,游泳可以增加老年小鼠EPC数量,改善后肢缺血,同时,已经有研究证明适度的低氧运动可促进人类血管生成[45]。


最近的一项研究还表明,游泳等运动能够诱导小鼠的心脏淋巴管生成,促进心肌细胞增殖[46]。





虽然运动可以有效刺激组织再生,但是某些群体由于身体原因,不适合进行运动,运动的健康作用就被大大限制了。


为了解决这个问题,研究者们把目光放在了运动诱导再生的机制上,通过直接干预作用靶点,达到和运动一样的效果。目前,这类治疗方案已初见成效。


IGF1


在多个器官中,IGF1的表达随着运动而升高,对提高肌肉力量[47]、减少衰老导致的脑细胞凋亡[48],以及心肌细胞生长[49]都起到重要作用。


研究发现,IGF1基因治疗能显著恢复脊髓损伤的成年大鼠神经功能[50],还促进脊髓损伤小鼠的脊髓再生[51]。


由于IGF1治疗可能引发肿瘤,一些研究者开发了间接干预IGF1的小分子药物。例如,BGP-15可以提高IGF1磷酸化,改善心力衰竭小鼠的心脏功能[52]。




PI3K-Akt通路


在肌肉,大脑和心脏中,PI3K信号的激活都会促进组织再生,而且目前发现多种可以作用于PI3K的小分子药物。


例如,PTEN是PI3K信号通路的负调控因子[53]。Bisperoxovanadium可以通过抑制PTEN激活PI3K,进行肌肉修复[54]。


在神经系统中,芒柄花素可以通过激活PI3K通路来预防脑缺血;外源性FGF10则通过该信号,促进外周神经损伤后的轴突再生[55,56]。


磷脂酰肌醇3-激酶(caPI3K-p110α)是作用于心脏的靶向药物,目前发现可以通过刺激PI3K通路,改善小鼠心脏功能[57,58,59],提示PI3K基因治疗在治疗心血管疾病方面具有临床潜力。


miRNA


小鼠的运动实验证明,miRNA介导多个器官的细胞增殖。例如,miR-23a/miR-27a可减轻慢性肾炎小鼠的肌肉损失[60];miR-135a下调可增加神经前体细胞的增殖,促进轴突再生[61,62];miR-17-3p有助于诱导的心肌细胞增殖。


这些观察结果表明,干预miRNA表达在组织再生方面有很大研究前景。




不用亲自运动,直接用药物就能达到同等效果,可能听起来很诱人,但是作者对这一研究提出了新的思考,那就是运动的调节分子对不同类型的细胞具有特异性作用,如果靶向精确性不够,则可能产生相反的效果。


另外,作者认为单纯的运动是不够的,需要结合其它因素一起治疗。我们期待研究能够近一步突破,早日发展新的再生医学。


—— TIMEPIE ——


这里是只做最硬核续命学研究的时光派,专注“长寿科技”科普。日以继夜翻阅文献撰稿只为给你带来最新、最全前沿抗衰资讯,欢迎评论区留下你的观点和疑惑;日更动力源自你的关注与分享,抗衰路上与你并肩同行!





参考文献

[1]https://gateways.biomedcentral.com/china/blogs/regenerativemedicine/

[2]http://www.gibh.cas.cn/kxcb/kpwz/201111/t20111111_3394924.html

[3]Liu, C., Wu, X., Vulugundam, G., Gokulnath, P., Li, G., & Xiao, J. (2023). Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. Sports medicine - open, 9(1), 27. https://doi.org/10.1186/s40798-023-00573-9

[4]Brett, J. O., Arjona, M.& Ikeda, M., et,al. (2020). Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nature metabolism, 2(4), 307–317. https://doi.org/10.1038/s42255-020-0190-0

[5]Chen, Z., Li, L.& Wu, W., et,al. (2020). Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics, 10(14), 6448–6466. https://doi.org/10.7150/thno.43577

[6]Inoue, A., Cheng, X. W.& Huang, Z., et, al . (2017). Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/AdipoR1 activation in SAMP10 mice. Journal of cachexia, sarcopenia and muscle, 8(3), 370–385. https://doi.org/10.1002/jcsm.12166

[7]Abreu, P., & Kowaltowski, A. J. (2020). Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. Journal of cachexia, sarcopenia and muscle, 11(6), 1661–1676. https://doi.org/10.1002/jcsm.12601

[8]Saito, Y., Chikenji, T. S., & Matsumura, T., et, al. (2020). Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nature communications, 11(1), 889. https://doi.org/10.1038/s41467-020-14734-x

[9]Schultz, E., Jaryszak, D. L., & Valliere, C. R. (1985). Response of satellite cells to focal skeletal muscle injury. Muscle & nerve, 8(3), 217–222. https://doi.org/10.1002/mus.880080307

[10]Stearns-Reider, K. M., D'Amore, A., Beezhold, K., Rothrauff, B., Cavalli, L., Wagner, W. R., Vorp, D. A., Tsamis, A., Shinde, S., Zhang, C., Barchowsky, A., Rando, T. A., Tuan, R. S., & Ambrosio, F. (2017). Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging cell, 16(3), 518–528. https://doi.org/10.1111/acel.12578

[11] Baar, K., & Esser, K. (1999). Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. The American journal of physiology, 276(1), C120–C127. https://doi.org/10.1152/ajpcell.1999.276.1.C120

[12]Blocquiaux, S., Gorski, T., Van Roie, E., Ramaekers, M., Van Thienen, R., Nielens, H., Delecluse, C., De Bock, K., & Thomis, M. (2020). The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Experimental gerontology, 133, 110860. https://doi.org/10.1016/j.exger.2020.110860

[13] Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4), 687–702. https://doi.org/10.1016/j.neuron.2011.05.001

[14] Leiter, O., Seidemann, S., & Overall, R. W., et, al. (2019). Exercise-Induced Activated Platelets Increase Adult Hippocampal Precursor Proliferation and Promote Neuronal Differentiation. Stem cell reports, 12(4), 667–679. https://doi.org/10.1016/j.stemcr.2019.02.009

[15] Brandt, M. D., Maass, A., & Kempermann, G., et, al. (2010). Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. The European journal of neuroscience, 32(8), 1256–1264. https://doi.org/10.1111/j.1460-9568.2010.07410.x

[16] Choi, S. H., Bylykbashi, E., & Chatila, Z. K., et, al. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science (New York, N.Y.), 361(6406), eaan8821. https://doi.org/10.1126/science.aan8821

[17] Fry, C. S., Noehren, B., &Mula, J., et, al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. The Journal of physiology, 592(12), 2625–2635. https://doi.org/10.1113/jphysiol.2014.271288

[18] Ohtomo, R., Kinoshita, K., & Ohtomo, G., et, al. (2020). Treadmill Exercise Suppresses Cognitive Decline and Increases White Matter Oligodendrocyte Precursor Cells in a Mouse Model of Prolonged Cerebral Hypoperfusion. Translational stroke research, 11(3), 496–502. https://doi.org/10.1007/s12975-019-00734-7

[19] Ding, Y., Li, J., & Clark, J., et, al. (2003). Synaptic plasticity in thalamic nuclei enhanced by motor skill training in rat with transient middle cerebral artery occlusion. Neurological research, 25(2), 189–194. https://doi.org/10.1179/016164103101201184

[20] Mu, L., Cai, J., & Gu, B., et, al. (2022). Treadmill Exercise Prevents Decline in Spatial Learning and Memory in 3×Tg-AD Mice through Enhancement of Structural Synaptic Plasticity of the Hippocampus and Prefrontal Cortex. Cells, 11(2), 244. https://doi.org/10.3390/cells11020244

[21] Tillerson, J. L., Caudle, W. M., & Reverón, M. E., et, al. (2003). Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience, 119(3), 899–911. https://doi.org/10.1016/s0306-4522(03)00096-4

[22]Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J., & Palmer, T. D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. The European journal of neuroscience, 18(10), 2803–2812. https://doi.org/10.1111/j.1460-9568.2003.03041.x

[23]Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 21(5), 1628–1634. https://doi.org/10.1523/JNEUROSCI.21-05-01628.2001

[24]Mir, S., Cai, W., Carlson, S. W., Saatman, K. E., & Andres, D. A. (2017). IGF-1 mediated Neurogenesis Involves a Novel RIT1/Akt/Sox2 Cascade. Scientific reports, 7(1), 3283. https://doi.org/10.1038/s41598-017-03641-9

[25]Blackmore, D. G., Golmohammadi, M. G., Large, B., Waters, M. J., & Rietze, R. L. (2009). Exercise increases neural stem cell number in a growth hormone-dependent manner, augmenting the regenerative response in aged mice. Stem cells (Dayton, Ohio), 27(8), 2044–2052. https://doi.org/10.1002/stem.120

[26]Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., & Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(19), 8270–8275. https://doi.org/10.1523/JNEUROSCI.5855-12.2013

[27]Pan, W., Banks, W. A., Fasold, M. B., Bluth, J., & Kastin, A. J. (1998). Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology, 37(12), 1553–1561. https://doi.org/10.1016/s0028-3908(98)00141-5

[28]Cefis, M., Chaney, R., Quirié, A., Santini, C., Marie, C., Garnier, P., & Prigent-Tessier, A. (2022). Endothelial cells are an important source of BDNF in rat skeletal muscle. Scientific reports, 12(1), 311. https://doi.org/10.1038/s41598-021-03740-8

[29]Gao, Y., Shen, M., Gonzalez, J. C., Dong, Q., Kannan, S., Hoang, J. T., Eisinger, B. E., Pandey, J., Javadi, S., Chang, Q., Wang, D., Overstreet-Wadiche, L., & Zhao, X. (2020). RGS6 Mediates Effects of Voluntary Running on Adult Hippocampal Neurogenesis. Cell reports, 32(5), 107997. https://doi.org/10.1016/j.celrep.2020.107997

[30] Chien, K. R., Frisén, J., & Fritsche-Danielson, R., et, al. (2019). Regenerating the field of cardiovascular cell therapy. Nature biotechnology, 37(3), 232–237. https://doi.org/10.1038/s41587-019-0042-1

[31] Vujic, A., Lerchenmüller, C., & Wu, T. D., et, al. (2018). Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nature communications, 9(1), 1659. https://doi.org/10.1038/s41467-018-04083-1

[32] Liu, X., Xiao, J., & Zhu, H., et, al. (2015). miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell metabolism, 21(4), 584–595. https://doi.org/10.1016/j.cmet.2015.02.014

[33] Wu, X., Wang, L., & Wang, K., et, al. (2022). ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Molecular therapy : the journal of the American Society of Gene Therapy, 30(1), 400–414. https://doi.org/10.1016/j.ymthe.2021.07.004

[34] Shi, J., Bei, Y., Kong, X., & Liu, X., et, al. (2017). miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics, 7(3), 664–676. https://doi.org/10.7150/thno.15162

[35] Xiao, J., & Rosenzweig, A. (2021). Exercise and cardiovascular protection: Update and future. Journal of sport and health science, 10(6), 607–608. https://doi.org/10.1016/j.jshs.2021.11.001

[36] Qiu, Y., Fernández-García, & B., Lehmann, et, al. (2023). Exercise sustains the hallmarks of health. Journal of sport and health science, 12(1), 8–35. https://doi.org/10.1016/j.jshs.2022.10.003

[37] Boström, P., Mann, N., Wu, J., Quintero, P. A., Plovie, E. R., Panáková, D., Gupta, R. K., Xiao, C., MacRae, C. A., Rosenzweig, A., & Spiegelman, B. M. (2010). C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell, 143(7), 1072–1083. https://doi.org/10.1016/j.cell.2010.11.036

[38] Ryall, K. A., Bezzerides, V. J., Rosenzweig, A., & Saucerman, J. J. (2014). Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. Journal of molecular and cellular cardiology, 72, 74–84. https://doi.org/10.1016/j.yjmcc.2014.02.013

[39] Ren, J., Samson, W. K., & Sowers, J. R. (1999). Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. Journal of molecular and cellular cardiology, 31(11), 2049–2061. https://doi.org/10.1006/jmcc.1999.1036

[40] Wang, H., Xie, Y., Guan, L., Elkin, K., & Xiao, J. (2021). Targets identified from exercised heart: killing multiple birds with one stone. NPJ Regenerative medicine, 6(1), 23. https://doi.org/10.1038/s41536-021-00128-0

[41] Wang, L., Lv, Y., Li, G., & Xiao, J. (2018). MicroRNAs in heart and circulation during physical exercise. Journal of sport and health science, 7(4), 433–441. https://doi.org/10.1016/j.jshs.2018.09.008

[42] Yang, T., Ai, S., Gokulnath, P., Li, G., & Xiao, J. (2022). Cellular and Extracellular Non-coding RNAs in Cardiac Physiology and Diseases. Journal of cardiovascular translational research, 15(3), 441–443. https://doi.org/10.1007/s12265-022-10270-9

[43] Gao, R., Wang, L., Bei, Y., Wu, X., Wang, J., Zhou, Q., Tao, L., Das, S., Li, X., & Xiao, J. (2021). Long Noncoding RNA Cardiac Physiological Hypertrophy-Associated Regulator Induces Cardiac Physiological Hypertrophy and Promotes Functional Recovery After Myocardial Ischemia-Reperfusion Injury. Circulation, 144(4), 303–317. https://doi.org/10.1161/CIRCULATIONAHA.120.050446

[44] Li, H., Trager, L. E., Liu, X., Hastings, M. H., Xiao, C., Guerra, J., To, S., Li, G., Yeri, A., Rodosthenous, R., Silverman, M. G., Das, S., Ambardekar, A. V., Bristow, M. R., González-Rosa, J. M., & Rosenzweig, A. (2022). lncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation, 145(16), 1218–1233. https://doi.org/10.1161/CIRCULATIONAHA.121.056850

[45] Cheng, X. W., Kuzuya, M., & Kim, W., et, al. (2010). Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxia-induced factor-1 alpha reactivation in mice of advanced age. Circulation, 122(7), 707–716. https://doi.org/10.1161/CIRCULATIONAHA.109.909218

[46] Bei, Y., Huang, Z., & Feng, X., et, al. (2022). Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. Journal of sport and health science, 11(4), 466–478. https://doi.org/10.1016/j.jshs.2022.02.005

[47] Bjersing, J. L., Larsson, A., & Palstam, A., et, al. (2017). Benefits of resistance exercise in lean women with fibromyalgia: involvement of IGF-1 and leptin. BMC musculoskeletal disorders, 18(1), 106. https://doi.org/10.1186/s12891-017-1477-5

[48] Lin, J. Y., Kuo, W. W., & Baskaran, R., et, al. (2020). Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging, 12(8), 6852–6864. https://doi.org/10.18632/aging.103046

[49] McMullen, J. R., Amirahmadi, F., & Woodcock, E. A., Schinke-Braun, M., Bouwman, R. D., Hewitt, K. A., Mollica, J. P., Zhang, L., Zhang, Y., Shioi, T., Buerger, A., Izumo, S., Jay, P. Y., & Jennings, G. L. (2007). Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 612–617. https://doi.org/10.1073/pnas.0606663104

[50] Jure, I., Lockhart, E. F., & De Nicola, A. F., et, al. (2021). IGF1 Gene Therapy Reversed Cognitive Deficits and Restored Hippocampal Alterations After Chronic Spinal Cord Injury. Molecular neurobiology, 58(12), 6186–6202. https://doi.org/10.1007/s12035-021-02545-0

[51] Liu, Y., Wang, X., & Li, W., et, al. (2017). A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron, 95(4), 817–833.e4. https://doi.org/10.1016/j.neuron.2017.07.037

[52] Sapra, G., Tham, Y. K., & Cemerlang, N., et, al. (2014). The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nature communications, 5, 5705. https://doi.org/10.1038/ncomms6705

[53] Martelli, A. M., Evangelisti, C., & Chiarini, F., et, al. (2010). The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 1(2), 89–103. https://doi.org/10.18632/oncotarget.114

[54] Dimchev, G. A., Al-Shanti, N., & Stewart, C. E. (2013). Phospho-tyrosine phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast migration in vitro. Requirement of PI3K/AKT and MAPK/ERK pathways. Journal of muscle research and cell motility, 34(2), 125–136. https://doi.org/10.1007/s10974-013-9340-2

[55] Liang, K., Ye, Y., & Wang, Y., et, al. (2014). Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. Journal of the neurological sciences, 344(1-2), 100–104. https://doi.org/10.1016/j.jns.2014.06.033

[56] Dong, L., Li, R., & Li, D., et, al. (2019). FGF10 Enhances Peripheral Nerve Regeneration via the Preactivation of the PI3K/Akt Signaling-Mediated Antioxidant Response. Frontiers in pharmacology, 10, 1224. https://doi.org/10.3389/fphar.2019.01224

[57] Weeks, K. L., Gao, X., & Du, X. J., et, al. (2012). Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circulation. Heart failure, 5(4), 523–534. https://doi.org/10.1161/CIRCHEARTFAILURE.112.966622

[58] Prakoso, D., De Blasio, M. J., & Qin, C., et, al. (2017). Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clinical science (London, England : 1979), 131(12), 1345–1360. https://doi.org/10.1042/CS20170063

[59] Prakoso, D., De Blasio, M. J., & Tate, M., et, al. (2020). Gene therapy targeting cardiac phosphoinositide 3-kinase (p110α) attenuates cardiac remodeling in type 2 diabetes. American journal of physiology. Heart and circulatory physiology, 318(4), H840–H852. https://doi.org/10.1152/ajpheart.00632.2019

[60] Wang, B., Zhang, C., & Zhang, A., et, al. (2017). MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy. Journal of the American Society of Nephrology : JASN, 28(9), 2631–2640. https://doi.org/10.1681/ASN.2016111213

[61] Wang, N., Yang, Y., & Pang, M.,et, al. (2020). MicroRNA-135a-5p Promotes the Functional Recovery of Spinal Cord Injury by Targeting SP1 and ROCK. Molecular therapy. Nucleic acids, 22, 1063–1077. https://doi.org/10.1016/j.omtn.2020.08.035

[62] van Battum, E. Y., Verhagen, M. G., & Vangoor, V. R., et, al. (2018). An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. The Journal of neuroscience : the official journal of the Society for Neuroscience, 38(3), 613–630. https://doi.org/10.1523/JNEUROSCI.0662-17.2017

唤醒干细胞,诱导多个组织再生!长期运动可让身体脱胎换骨的评论 (共 条)

分享到微博请遵守国家法律