欢迎光临散文网 会员登陆 & 注册

生信小白福利帖,一文理清8种免疫浸润分析方法!/SCI论文/科研/研究生/生信分析热点思

2023-03-08 19:00 作者:尔云间  | 我要投稿

在生信高速发展趋势下,免疫浸润分析从一开始的高创新性分析、生信分析高配,只是去年1年的时间就已经发展为几乎所有生信文章的标配了(ps:真是“旧时王谢堂前燕,飞入寻常百姓家”啊)

由于免疫本身与各种疾病都比较相关,所以不管是肿瘤还是非肿瘤疾病都可以做免疫浸润分析,只是非肿瘤生信中免疫浸润分析内容相对简单一些。

面对这种发展趋势,大神估计是花样使用各种方法来做免疫浸润分析。对于生信小白,也不要着急,可以先多多了解一些免疫浸润分析小知识~ ~

那生信里常用的免疫分析方法都有哪些呢?

小云总结了8种分析方法,一起来看看吧~ ~

基于marker gene的ssGSEA富集分析的免疫分析方法

该方法将不同免疫细胞对应的marker genes作为基因集合, 采用类似GSEA的算法来评估样本中高表达的基因在不同免疫细胞的基因集合中是否富集。其代表性研究工具包括ssGSEAxCell,MCP-counter,ESTIMATE等。

ssGSEA:单样本基因集富集分析(single sample gene set enrichment analysis, ssGSEA),是针对单个样本无法做 GSEA 而设计的。最早是在 2009 年被提出(Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1),它可以使用 GSVA R 包来实现,目前 ssGSEA 常被用于评估肿瘤免疫细胞浸润程度。 

MCP-counter (http://github.com/ebecht/MCPcounter ) 是由Becht团队于2016年开发的一个R包,该R包可以通过归一化后的转录组数据量化异质组织中8个免疫细胞和2个基质细胞的绝对丰度。分数的高低可以显示其在免疫微环境中的浸润程度,细胞之间的丰度不可互相比较。

xCell(http://xcell.ucsf.edu/ )是基于 ssGSEA 的方法,可根据 64 种免疫细胞和基质细胞类型的基因表达数据进行细胞类型富集分析。Xcell 的输入文件是来自人类混合样本的基因表达矩阵(基因作为行,样本作为列)。如果基因表达数据来自微阵列,就不需要标准化。如果基因表达数据来自一个测序平台,数值必须被归一化为基因长度(例如,rpkm,tpm,fpkm)。Xcell 使用表达式级别排序,而不使用实际值,因此进一步的规范化不会产生影响。该方法适用于基因表达谱和RNA-seq数据,但不适用于单细胞数据。

Estimate是一种使用基因表达特征来推断肿瘤样本中间质和免疫细胞比例的方法,全称为Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data(使用表达数据估计恶性肿瘤中的间质和免疫细胞)。ESTIMATE算法基于ssGSEA算法对 stromal和immune 两个基因集进行打分,得到肿瘤样本的基质分数(stromal score )和免疫分数(immune score),两个分数相加即得到estimate score,可用于估计肿瘤纯度。

ImmuneCellAI(http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/)是一个免疫细胞丰度综合分析网络平台,基于ssGSEA算法估算了包括RNA-Seq和微阵列数据在内的基因表达数据集中24个免疫细胞浸润丰度,同时可以预测患者对免疫检查点抑制剂治疗的反应。其中24个免疫细胞由18个T细胞亚型和6个其他免疫细胞组成:B细胞,NK细胞,单核细胞,巨噬细胞,中性粒细胞和DC细胞。该网站分析功能较为突出,且图片比较精美,对新手小白来说真的是一个不错的选择。

基于反褶积算法的免疫细胞浸润分析方法

该方法将每个样本看作是多种免疫细胞的混合,采用线性回归拟合出每种免疫细胞的组分和表达量与最终混合后的关系,通过反卷积算法,提取每种免疫细胞的表达特征,其中最常用的免疫浸润分析方法是TIMER2CIBERSORT和EPIC

CIBERSORT( https://cibersort.stanford.edu/  )是目前引用次数最多的免疫细胞浸润估计分析工具,2015年首次发表于Nature method。CIBERSORT利用线性支持向量回归的原理对免疫细胞亚型的表达矩阵进行去卷积,来估计免疫细胞的丰度。CIBERSORT 提供了 22 种常见的免疫浸润细胞表达数据 LM22,包括不同的细胞类型和功能状态的免疫细胞。其升级版CIBERSORTx不仅在于可以通过单细胞RNA-seq数据构建专属signature(各免疫细胞marker基因),还能够推测各免疫细胞特征基因表达谱,进一步将研究向机制方向伸展。

TIMER应用反褶积算法从基因表达谱中推断肿瘤浸润性免疫细胞(TIICs)的丰度。 TIMER2.0 (http://timer.cistrome.org/ ) 是TIMER软件的更新版本,是一个可交互式web工具,能够对肿瘤免疫浸润细胞进行分析以及可视化。TIMER2.0版本主要包含Immune, Exploration, Estimate三大模块,可以手动输入RNA-seq的基因TPM标准化值。TIMER2.0综合TIMER, xCell, MCP-counter, CIBERSORT, EPIC和quanTIseq给出120个免疫微环境相关细胞的得分。另外该软件还基于以上六种方法对TCGA数据库中的所有样本进行免疫浸润分析,并提供多个可视化线上工具。

EPIC(https://gfellerlab.shinyapps.io/EPIC_1-1 )可根据表达数据分析出8种免疫细胞的浸润比例,包括B细胞、 肿瘤相关成纤维细胞(CAFs)、CD4+T细胞、 CD8+T细胞、 内皮细胞、 巨噬细胞和NK细胞。EPIC的算法思路是使用约束最小二乘回归将非负性约束条件明确纳入反卷积问题,并强加每个样本中所有细胞分数的总和不超过一。其使用简单,仅需提交RNA-Seq表达数据,设置参数,设置运行任务名称3步即可完成。

小云之声

如果您的时间和精力有限或者缺乏相关经验,并且对生信分析和思路设计有所需要的话,“生信鸟”非常乐意为您提供如下服务:免费思路评估、付费生信分析和方案设计以及实验项目实施等,有意向的小伙伴欢迎咨询小云哦!


生信小白福利帖,一文理清8种免疫浸润分析方法!/SCI论文/科研/研究生/生信分析热点思的评论 (共 条)

分享到微博请遵守国家法律