欢迎光临散文网 会员登陆 & 注册

Mathhouse中的一些积分题

2023-07-23 22:45 作者:现代微积分  | 我要投稿

今天起兴翻了翻以前的“装b”记录,发现了@Mathhouse这位up。评论可以追溯到21年9~12月那时了。嗨,想当年我在这up评论区可谓“叱咤风云”,我有幸也成为他首个(非官方号的)关注[滑稽]

另外,当年混日子的事儿可就别提了,我沉迷到回宿舍刷视频到凌晨(

我当时做数学题起来的沉迷度可跟大多数人看小说一样,所以....嗨,复试已经给我深刻教训了,以后一定要平衡好的

可惜的是这位up不知什么原因停更一年了,期待他有朝一日继续回来更新[滑稽]

重新做了做这位up发的题,发现有些题目已经精通很多聊~(摸鱼的"小成果")截取部分题来给出自己的解析

别担心,这些都是例子,如果嫌长可以先跳到最后看总结再回头做这些题


注:下面的积分均省略+C


(1)%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%5Csqrt%7Bx%7D-x%5E2%20%7D%20%7D%20%5Cmathrm%7Bd%7Dx

积分 1/Sqrt[x Sqrt[x] - x^2]

这题可以用切比雪夫定理解决

被积函数化成二项微分式,即x%5E%7B-%5Cfrac%7B3%7D%7B4%7D%20%7D(1-x%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D

%5Calpha%20%3D-%5Cfrac%7B3%7D%7B4%7D%2Ca%3D1%2Cb%3D-1%2C%5Cbeta%20%3D%5Cfrac%7B1%7D%7B2%7D%20%2C%5Cgamma%20%3D-%5Cfrac%7B1%7D%7B2%7D%20

其中%5Cfrac%7B%5Calpha%20%2B1%7D%7B%5Cbeta%20%7D%2B%5Cgamma%20%3D0%5Cin%20%5Cmathbb%7BZ%7D%20,属于情形三,于是令

u%5E2%3D%5Cfrac%7B1-x%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%20,则有:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%20x%3D%5Cfrac%7B1%7D%7B(u%5E2%2B1)%5E2%7D%20%5C%5C%0A2u%5Cmathrm%7Bd%7Du%3D-%5Cfrac%7B1%7D%7B2%7D%20x%5E%7B-%5Cfrac%7B3%7D%7B2%7D%20%7D%5Cmathrm%7Bd%7Dx%0A%5Cend%7Bmatrix%7D%5Cright.


于是

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D-4%5Cint%20x%5E%7B%5Cfrac%7B3%7D%7B4%7D%20%7D(1-x%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7Du%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-4%5Cint%20(%5Cfrac%7B1%7D%7B(1%2Bu%5E2)%5E2%7D%20)%5E%7B%5Cfrac%7B3%7D%7B4%7D%20%7D(1-(%5Cfrac%7B1%7D%7B(1%2Bu%5E2)%5E2%7D%20)%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7Du%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-4%5Cint%20%5Cfrac%7B1%7D%7Bu%5E2%2B1%7D%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-4%5Ctan%5E%7B-1%7Du%5C%5C%0A%26%3D-4%5Ctan%5E%7B-1%7D%5Csqrt%7Bx%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D-1%7D%20%0A%5Cend%7Balign%7D

ps:第二行看似长了些,实际上只是简单的幂指数运算而已。

(2)%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx-%5Csqrt%7Bx%7D%20%7D%20%7D%20%5Cmathrm%7Bd%7Dx

双重根式函数积分 Integral of 1/Sqrt[x - Sqrt[x]] dx = ?

也是用切比雪夫定理

被积函数化成二项微分式,即x%5E%7B-%5Cfrac%7B1%7D%7B4%7D%20%7D(-1%2Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7D

属于情形三,于是令u%5E2%3D%5Cfrac%7B-1%2Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%7Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%20

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D4%5Cint%20x%5E%7B%5Cfrac%7B5%7D%7B4%7D%20%7D(x%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D-1)%5E%7B-%5Cfrac%7B1%7D%7B2%7D%20%7Du%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D4%5Cint%20%5Cfrac%7B1%7D%7B(1-u%5E2)%5E2%7D%20%5Cmathrm%7Bd%7Du%0A%5Cend%7Balign%7D

到此可以采用三角换元u%3D%5Csin%20t了,这里给出另一种分部积分的做法

将分子利用1的代换化为1-u%5E2%2Bu%5E2

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Cfrac%7B1%7D%7B1-u%5E2%7D%5Cmathrm%7Bd%7Du%2B%5Cint%20%5Cfrac%7Bu%5E2%7D%7B(1-u%5E2)%5E2%7D%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D%5Ccosh%5E%7B-1%7Du%2B%5Cint%5Cfrac%7B1%7D%7B2%7D%20u%5Cmathrm%7Bd%7D(%5Cfrac%7B1%7D%7B1-u%5E2%7D%20)%5C%5C%0A%26%3D%5Ccosh%5E%7B-1%7Du%2B%5Cfrac%7B1%7D%7B2%7D%20%20%5Cfrac%7Bu%7D%7B1-u%5E2%7D-%5Cfrac%7B1%7D%7B2%7D%5Cint%20%5Cfrac%7B1%7D%7B1-u%5E2%7D%5Cmathrm%7Bd%7Du%20%20%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B2%7D%20%5Ccosh%5E%7B-1%7Du%2B%5Cfrac%7B1%7D%7B2%7D%20%20%5Cfrac%7Bu%7D%7B1-u%5E2%7D%0A%5Cend%7Balign%7D

再回代即可


当然,这题也可以用双元法

这个是在混知乎的时候学了点皮毛(方法源自虚调子),要有一定基础才行,新手姑且将p,q理解为分别代指那背后的两个函数吧

%5Csqrt%7Bx-%5Csqrt%7Bx%7D%20%7D%20%3D%5Csqrt%7B(%5Csqrt%7Bx%7D-%5Cfrac%7B1%7D%7B2%7D)%5E2-%5Cfrac%7B1%7D%7B4%7D%20%20%20%7D

p%3D%5Csqrt%7Bx%7D%20-%5Cfrac%7B1%7D%7B2%7D%20%2Cq%3D%5Csqrt%7Bx-%5Csqrt%7Bx%7D%20%7D%20,有:

p%5E2-q%5E2%3D%5Cfrac%7B1%7D%7B4%7D%20%5CRightarrow%20p%5Cmathrm%7Bd%7D%20p%3Dq%5Cmathrm%7Bd%7D%20q

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Cfrac%7B1%7D%7Bq%7D%5Cmathrm%7Bd%7D%20%5B(p%2B%5Cfrac%7B1%7D%7B2%7D%20)%5E2%5D%20%5C%5C%0A%26%3D2%5Cint%20%5Cfrac%7Bp%7D%7Bq%7D%20%5Cmathrm%7Bd%7Dp%2B%5Cint%20%5Cfrac%7B1%7D%7Bq%7D%20%5Cmathrm%7Bd%7Dp%5C%5C%0A%26%3D2%5Cint%20%5Cmathrm%7Bd%7Dq%2B%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bp%5E2-%5Cfrac%7B1%7D%7B4%7D%20%7D%20%7D%20%5Cmathrm%7Bd%7Dp%5C%5C%0A%26%3D2q%2B%5Ccosh%5E%7B-1%7D2p%5C%5C%0A%26%3D2%5Csqrt%7Bx-%5Csqrt%7Bx%7D%20%7D%20%2B%5Ccosh%5E%7B-1%7D(2%5Csqrt%7Bx%7D%20-1)%0A%5Cend%7Balign%7D

(3)%5Cint%20%5Cfrac%7Bx%5E2%7D%7B(x%5Csin%20x%2B%5Ccos%20x)%5E2%7D%5Cmathrm%7Bd%7Dx

有点难度的积分 Integral of x^2/(x sinx + cosx)^2 dx

这里给出一个比较妙的方法:凑辅助角

对于出现x%5Csin%20x%2B%5Ccos%20x%2Cx%5Csin%20x-%5Ccos%20x这种玩意可以考虑用

%5Cbegin%7Balign%7D%0A%26x%5Csin%20x%2B%5Ccos%20x%5C%5C%0A%3D%26%5Csqrt%7B1%2Bx%5E2%7D(%5Cfrac%7Bx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%20%5Csin%20x%2B%5Cfrac%7B1%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%20%5Ccos%20x)%20%5C%5C%0A%3D%26%5Csqrt%7B1%2Bx%5E2%7D%5Ccos%20(x-%5Ctan%5E%7B-1%7Dx)%0A%5Cend%7Balign%7D

于是%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Cint%20%5Cfrac%7Bx%5E2%7D%7B(1%2Bx%5E2)%5Ccos%5E2(x-%5Ctan%5E%7B-1%7Dx)%7D%5Cmathrm%7Bd%7Dx

注意到%5Cmathrm%7Bd%7D(x-%5Ctan%5E%7B-1%7Dx)%3D%5Cfrac%7Bx%5E2%7D%7Bx%5E2%2B1%7D%5Cmathrm%7Bd%7Dx

于是

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Csec%5E2(%7B%5Ccolor%7BRed%7D%20%7Bx-%5Ctan%5E%7B-1%7Dx%7D%7D%20)%5Cmathrm%7Bd%7D(%7B%5Ccolor%7BRed%7D%20%7Bx-%5Ctan%5E%7B-1%7Dx%7D%7D%20)%5C%5C%0A%26%3D%5Ctan%20(%7B%5Ccolor%7BRed%7D%20%7Bx-%5Ctan%5E%7B-1%7Dx%7D%7D)%0A%5Cend%7Balign%7D

ps:上述法参考于无理函数君的解答

另外一个视频是变式:求不定积分 ∫(x^2+20)/(xsin(x)+5cos(x))^2 dx

也是将分母配辅助角公式,留给读者当练习吧[滑稽]

(4)%5Cint%20%5Cfrac%7B1%7D%7Bx%5E2%5Csqrt%5B4%5D%7B(x%5E4%2B1)%5E3%7D%20%7D%20%5Cmathrm%7Bd%7Dx

有点难度的积分 Integral of 1/(x^2 Power[(x^4 + 1)^3, (4)^-1]) dx

这就又是用切比雪夫定理啦,跟前两题是一个题型

被积函数化成二项微分式,即x%5E%7B-2%7D(x%5E4%2B1)%5E%7B-%5Cfrac%7B3%7D%7B4%7D%20%7D

属于情形三,于是令u%5E4%3D%5Cfrac%7B1%2Bx%5E4%7D%7Bx%5E4%7D%20

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D-%5Cint%20x%5E3(x%5E4%2B1)%5E%7B-%5Cfrac%7B3%7D%7B4%7D%20%7Du%5E3%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-%5Cint%20%20%5Cmathrm%7Bd%7Du%5C%5C%0A%26%3D-u%5C%5C%0A%26%3D-%5Cfrac%7B%5Csqrt%5B4%5D%7B1%2Bx%5E4%7D%20%7D%7Bx%7D%20%0A%5Cend%7Balign%7D

在视频有点难度的积分Integral of (x^6 + x^3) Power[x^3 + 2, (3)^-1] dx评论区有网友提及了一个积分:%5Cint%20(x%5E3-3)%5E%7B-%5Cfrac%7B1%7D%7B3%7D%20%7D%5Cmathrm%7Bd%7Dx

就也是用切比雪夫定理,属于情形三

%5Cfrac%7Bx%5E3-3%7D%7Bx%5E3%7D%20%3Du%5E3,最终化为:%5Cint%20%5Cfrac%7Bt%7D%7B1-t%5E3%7D%5Cmathrm%7Bd%7Dt%20%20

裂项后逐项积分再回代即可

还有几道类似的题当练习

求不定积分 ∫x Sqrt[1 - x^4] dx

求不定积分 Integral of x^5/Sqrt[x^3 + 1] dx

%5Cint%20(x%5E2%2B1)%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%5Cmathrm%7Bd%7Dx

评论区里的积分 Integral of (x^2 + 1)^(3/2) dx

这题有常规的三角换元x%3D%5Ctan%20t的做法和双曲换元x%3D%5Csinh%20t的做法。

而如果这题用双元法的话会爽快很多

前置结论:(图片)

y%3D%5Csqrt%7Bx%5E2%2B1%7D%20,则y%5E2-x%5E2%3D1

%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D%5Cint%20y%5E3%5Cmathrm%7Bd%7Dx

递推式赋值%7B%5Ccolor%7BRed%7D%20%7Bp%7D%7D%20%5Cto%20y%2C%7B%5Ccolor%7BDodgerBlue%7D%20%7Bq%7D%7D%20%5Cto%20x%2C%5Clambda%20%3D1

赋值n%3D3得:

4%5Cint%20y%5E3%5Cmathrm%7Bd%7Dx%3Dy%5E3x%2B3%5Cint%20y%5Cmathrm%7Bd%7Dx

赋值n%3D1得:

2%5Cint%20y%5Cmathrm%7Bd%7Dx%3Dyx%2B%5Cint%20y%5E%7B-1%7D%5Cmathrm%7Bd%7Dx

其中

%5Cint%20y%5E%7B-1%7D%5Cmathrm%7Bd%7Dx%3D%5Cint%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%5E2%2B1%7D%20%7D%5Cmathrm%7Bd%7Dx%3D%5Csinh%5E%7B-1%7Dx

③代入②,②代入①得:

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20y%5E3%5Cmathrm%7Bd%7Dx%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B4%7D%20xy%5E3%2B%5Cfrac%7B3%7D%7B8%7D%20xy%2B%5Cfrac%7B3%7D%7B8%7D%5Csinh%5E%7B-1%7Dx%20%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B4%7D%20x(1%2Bx%5E2)%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%2B%5Cfrac%7B3%7D%7B8%7D%20x%5Csqrt%7B1%2Bx%5E2%7D%20%2B%5Cfrac%7B3%7D%7B8%7D%5Csinh%5E%7B-1%7Dx%20%5C%5C%0A%5Cend%7Balign%7D

ps:双元点火公式推导参考笔者在知乎写的一篇小水文:

https://zhuanlan.zhihu.com/p/641800651

%5Cint%20%5Cfrac%7Bx%5E3%7D%7B(1-x%5E2)%5E5%7D%20%5Cmathrm%7Bd%7Dx

网友分享的积分 Integral of x^3/(1 - x^2)^5 dx

y%3D%5Csqrt%7B1-x%5E2%7D%20,则

x%5E2%2By%5E2%3D1%5CRightarrow%20x%5Cmathrm%7Bd%7Dx%3D-y%5Cmathrm%7Bd%7Dy

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Cfrac%7Bx%5E3%7D%7By%5E%7B10%7D%7D%5Cmathrm%7Bd%7Dx%3D-%5Cint%20%5Cfrac%7Bx%5E2%7D%7By%5E%7B9%7D%7D%5Cmathrm%7Bd%7Dy%5C%5C%0A%26%3D-%5Cint%20%5Cfrac%7B1-y%5E2%7D%7By%5E%7B9%7D%7D%5Cmathrm%7Bd%7Dy%3D%5Cint%20-%5Cfrac%7B1%7D%7By%5E9%7D%20%2B%5Cfrac%7B1%7D%7By%5E7%7D%5Cmathrm%7Bd%7Dy%20%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B8y%5E8%7D-%5Cfrac%7B1%7D%7B6y%5E6%7D%20%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B8(1-x%5E2)%5E4%7D-%5Cfrac%7B1%7D%7B6(1-x%5E2)%5E3%7D%0A%5Cend%7Balign%7D


ps:其他方法抑或如评论区所言,把一个x方后面凑x^2,再凑1-x^2

再如积分对比:1/(x^2 Sqrt[1 + x^2]) vs x^2/Sqrt[1 + x^2]

简单积分:Integral of Sqrt[x]/(1 + Power[x, (3)^-1]) dx

简单积分:Integral of 1/(Sqrt[x] + Power[x, (3)^-1]) dx

这些都可以用切比雪夫定理求解,也可以尝试用双元法

到此阿B的限制的公式数居然还没满,那就再水几道题...

%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7B(x%2B%5Csqrt%7B1%2Bx%5E2%7D%20)%5E2%7D%5Cmathrm%7Bd%7Dx

积分 1/(x + Sqrt[1 + x^2])^2,从 0 到 ∞

这题用双曲换元应该是最快的

x%3D%5Csinh%20t

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%20%5Cfrac%7B1%7D%7B(%5Csinh%20t%2B%5Ccosh%20t)%5E2%7D%20%5Ccdot%20%5Ccosh%20t%5Cmathrm%7Bd%7Dt%20%5C%5C%0A%26%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%20%5Cfrac%7B1%7D%7Be%5E%7B2t%7D%7D%20%5Ccdot%20%5Cfrac%7Be%5Et%2Be%5E%7B-t%7D%7D%7B2%7D%20%5Cmathrm%7Bd%7Dt%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%20e%5E%7B-t%7D%2Be%5E%7B-3t%7D%20%5Cmathrm%7Bd%7Dt%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B2%7D(-e%5E%7B-t%7D-%5Cfrac%7B1%7D%7B3%7De%5E%7B-3t%7D%20)%7C%20_%7B0%7D%5E%7B%5Cinfty%20%7D%5C%5C%0A%26%3D%5Cfrac%7B2%7D%7B3%7D%0A%5Cend%7Balign%7D

ps:原专栏的方法为欧拉代换,也属于脱去二次根式的一种暴力但比较普适的方法

%5Cint%20%5Cln%20(%5Csqrt%7Bx%2B1%7D%2B%5Csqrt%7Bx%7D%20%20)%5Cmathrm%7Bd%7Dx

有点难度的积分 Integral of ln (Sqrt[x + 1] + Sqrt[x]) dx

双曲换元,令x%3D%5Csinh%5E2t

%5Cbegin%7Balign%7D%0A%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%26%3D%5Cint%20%5Cln%20(%5Ccosh%20t%2B%5Csinh%20t)%5Cmathrm%7Bd%7D(%5Csinh%5E2t)%5C%5C%0A%26%3Dt%5Cmathrm%7Bd%7D(%5Csinh%5E2t)%3Dt%5Csinh%5E2t-%5Cint%20%5Csinh%5E2t%5Cmathrm%7Bd%7Dt%20%5C%5C%0A%26%3Dt%5Csinh%5E2t-%20%5Cint%20%5Cfrac%7B%5Ccosh2t-1%7D%7B2%7D%20%5Cmathrm%7Bd%7Dt%20%5C%5C%0A%26%3Dt%5Csinh%5E2t-%20%5Cfrac%7B1%7D%7B4%7D%5Csinh%202t%2B%5Cfrac%7B1%7D%7B2%7Dt%5C%5C%0A%26%3Dx%5Csinh%5E%7B-1%7D%5Csqrt%7Bx%7D-%20%5Cfrac%7B1%7D%7B2%7D%5Csinh%20t%5Ccosh%20t%2B%5Cfrac%7B1%7D%7B2%7D%5Csinh%5E%7B-1%7D%5Csqrt%7Bx%7D%5C%5C%0A%26%3D(x%2B%5Cfrac%7B1%7D%7B2%7D%20)%5Csinh%5E%7B-1%7D%5Csqrt%7Bx%7D-%20%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7Bx%7D%5Csqrt%7B1%2Bx%7D%20%0A%5Cend%7Balign%7D

总结

本篇主要有如下几点值得掌握的:

(1)切比雪夫定理(二项微分式)

参考链接:

https://baike.baidu.com/item/%E4%BA%8C%E9%A1%B9%E5%BE%AE%E5%88%86%E5%BC%8F/643325

以后遇到这类型的积分就可以直接套公式解决啦~

(2)对于出现x%5Csin%20x%2B%5Ccos%20x%2Cx%5Ccos%20x%2B%5Csin%20x这种形式的积分,可以考虑配凑辅助角

(3)双元递推式,推导参考链接:

https://zhuanlan.zhihu.com/p/641800651

另外,笔者的知乎小水号道同者也可以关注下哦[滑稽]


可能是在知乎和虚佬的双元群里混出点“成效”了,现在看这些不定积分题真的是和谐温柔很多。群里的积分大多长这样的

复杂的形式+阴间的换元,令人望而生畏,可谓看着都长脑子(


估计很多都得借助matlab,mma这种软件分析才能凑出数来。而且直接扔给计算机算还未必能算出。也或许还有命题的线路没掌握,有待课余时间去摸索(


而我只能依靠一些想对简单的一些题试着去模仿并发掘逻辑,能自学取得这点小成效已经很幸运聊~

水了很多期专栏和动态,这篇终于算有些知识含量了。有其他要补充的话欢迎在评论区留言~


Mathhouse中的一些积分题的评论 (共 条)

分享到微博请遵守国家法律