【TED演讲稿】如何利用森林和真菌的共生关系
TED演讲者:Colin Averill / 科林·艾维尔
演讲标题:How to harness the ancient partnership between forests and fungi / 如何利用森林和真菌的共生关系
内容概要:If we want to better understand the environment and combat climate change, we need to look deep underground, where diverse microscopic fungal networks mingle with tree roots to form symbiotic partnerships, says microbiologist Colin Averill. As we learn more about which of these fungi are most beneficial to forest health, we can reintroduce them into the soil -- potentially enhancing the growth and resilience of carbon-trapping trees and plants. Hear more about the emerging science...
微生物学家科林·艾维尔提出,如果我们想要更好的理解生态环境、应对气候变化,我们应该将眼光放在地表以下,去研究多样的真菌群和植物根系的共生关系。理解了哪些真菌对森林健康状况有影响,我们可以将这些真菌重新引入到土壤中,助力植被生长并促进森林固碳率。让我们一起来聆听更多利用土壤改善森林生态系统的最新研究发现。
*******************************************
【1】So we know forests play an essential role in regulating the Earth's climate.
森林是调节地球气候重要的一环。
【2】However, most of what we know about those forests is actually based on things we can measure aboveground.
但我们对森林的认知, 大多基于地表我们可以测量的事物。
【3】So historically, ecologists like myself would come to this place, and we'd count the number of tree stems we'd find.
以前,像我一样的 生态学家们会来到森林里, 计算我们能找到的树的数量,
【4】We'd identify which species they are, and today we'd probably remotely sense features of this forest canopy from space.
并会判定这些树木的物种。 在今天我们则会(运用卫星) 从太空来获取关于森林地表的数据。
【5】And all of this absolutely makes sense.
这些(测量方式)都很有道理。
【6】Aboveground is where photosynthesis happens.
地表以上才能有光合作用发生。
【7】Photosynthesis is how carbon and energy enter forests.
通过光合作用,无机碳 和能量才能进入森林。
【8】Photosynthesis is how trees can remove carbon dioxide from the atmosphere.
树木也是通过光合作用吸收大气中的二氧化碳。
【9】However, we also know most trees are limited in some way, by soil resources like water or nutrients.
但大部分的树木的光合作用的过程, 都被土壤中是否有水分和养分限制。
【10】And to access those resources, trees have to build roots.
树木必须要发展根才能获取这些资源,
【11】And trees build an incredible amount of roots.
而它们所发展出的根茎系统大多非常庞大。
【12】So in some forests, there can be as much or more biomass belowground, in root structures, as aboveground, in stems and leaves.
所以在有些森林里, 地下根系的生物质(biomass) 和地表的树干和树叶的生物质一样,甚至更多。
【13】Decades of research have now made very clear that belowground ecology - so what's going on in the soil -- is really essential to understanding how these forest systems work.
数十年的研究表明,地下生态学, 也就是土壤中的生态学,对理解森林系统运作的方式至关重要。
【14】However, if you follow these root systems all the way out to their terminal ends, the finest tips in the root system, and you look closely -- I mean super closely, like, you're going to need a microscope closely -
但如果你在这些地下根系中 顺着树根一直到它们的末端, 非常非常仔细地观察, 用显微镜放大,
【15】you discover a place where the tree stops being a plant, and starts becoming a fungus.
你会发现 树根在末端的某一个位置开始不再是植物, 而变成了真菌。
【16】So most trees on Earth form a partnership, or what scientists call symbiosis, with mycorrhizal fungi.
大部分地球上的树木都会和菌根真菌形成合作关系, 科学家们称这种合作关系为共生(symbiosis)。
【17】So this, in my opinion, is one of the most remarkable images ever captured of these organisms.
这是我见过捕捉菌根真菌的最震撼人心的图片之一。
【18】So in the background, at the top, you can see this dense network of fungal hyphae.
在图片上半部分的背景里, 你可以看到密密麻麻的菌丝形成的网络,
【19】These are essentially like roots, but for fungi, instead of plants.
这些菌丝是真菌的树根。
【20】And in the foreground, you can see these incredible, multinucleated fungal spores, which look totally unreal, but absolutely are.
在这些菌丝上方, 你可以看到有多个细胞核的真菌孢子。 它们看起来好像假的一样,但是是真实存在的。
【21】These are the reproductive structures of the fungus.
这些孢子是真菌的生殖系统,
【22】These have the potential to become entirely new fungal networks.
它们可以成长为全新的菌群。
【23】Mycorrhizal fungi are essential to how basically all plants access limiting soil resources.
菌根真菌对植物获取有限的土壤中的资源来说至关重要。
【24】There's actually evidence that when plants first made the evolutionary transition from living in water to living on land, they evolved this symbiosis before they even evolved roots.
有证据表明, 进化历史中,在植物第一次从水生转变到陆生的过程中, 在进化出根系前, 它们首先进化出了真菌的共生关系。
【25】And so this partnership between forests and their fungi is ancient, and it stretches back hundreds of millions of years.
所以森林和真菌的合作关系由来已久, 有着上百万年的历史。
【26】However, these roots don't have to be just fungi.
其实,和树根形成共生关系的不只是真菌。
【27】They can also be, for instance, bacteria.
也可以是,比如说,细菌。
【28】So these circular structures in this root network are called root nodules.
这个根系中的球形结构叫做根瘤。
【29】They house symbiotic, nitrogen-fixing bacteria.
根瘤中生长着固氮的细菌。
【30】And what these bacteria do is actually convert nitrogen gas in the atmosphere into plant-usable forms, and in turn, they nurture plant growth.
这些固氮细菌会把大气中的氮气 转化成可以被植物利用的形式, 从而滋养植物的生长。
【31】And the complexity of soil biology just keeps going.
土壤生态学的复杂性远不止如此。
【32】So these root symbionts are embedded in an even more complex network of free-living bacterial and fungal decomposers, and archaea and protists, microscopic soil animals, viruses ...
这些根系的共生菌生活在一个错综复杂的环境里: 有不依附根系生活的细菌、起到分解者作用的真菌、 古细菌、原生生物、微型动物、病毒等等。
【33】The biodiversity of soil communities is astonishing.
土壤中的生物多样性令人震惊。
【34】We now know a handful of soil can easily contain over 1,000 coexisting microbial species.
据我们现在的知识,一捧土里面 少说也有超过一千种微生物。
【35】And so all of this, this is the soil microbiome.
这就是我们所说的土壤微生物群,
【36】This is the forest microbiome, this is the ecosystem microbiome.
也是整个森林和生态系统的微生物群。
【37】So breakthroughs in DNA sequencing technology have finally turned the lights on belowground.
近年来基因测序的技术突破 让我们终于可以一探这些地下系统的究竟。
【38】DNA has allowed us to see these microbial communities in unprecedented detail, and, only recently, at unprecedented scales.
我们通过DNA测序详细了解了这些微生物群, 并终于在近期获得了大量的数据。
【39】Yet despite these breakthroughs, I'd argue we still don't know the answers to seemingly simple questions, like this: "What does a healthy forest microbiome look like?"
但即使有了这些突破, 我认为我们仍旧对一些看似简单的问题一无所知,比如: 【“健康的森林微生物群是什么样的?”】
【40】We're far closer to answering a question like this for people than we are for plants.
科学家在植物微生物群的研究进度, 远不及人类微生物群,
【41】The Human Microbiome Project has really led in this area.
这其中人类微生物组计划起到了领军作用。
【42】So the human body is a microbial ecosystem.
我们知道人体其实也是一个微生物的生态系统。
【43】Each of us houses an incredibly biodiverse community of bacteria in our gut, and that has a profound impact on our health.
我们每一个人都有数量和种类庞大的肠道菌群, 这个群菌对我们的健康有着很大的影响。
【44】This was discovered by medical microbiologists using DNA sequencing to characterize which bacteria live in hundreds of people's bodies.
医用微生物学家们 运用DNA测序检测了几百人的肠道菌群 并确定了这些细菌的种类,
【45】And importantly, also noting health features of those same people.
同时他们也记录了这些被试的健康状况。
【46】So, are they sick? And if so, with what?
这些人生病了吗?如果是,他们得了什么病?
【47】What's their blood pressure, their digestive health, their mental health?
他们的血压怎么样?消化还好吗? 心理健康又如何?
【48】And by combining all of that information, those microbiologists could begin to identify combinations of bacteria linked to health and disease.
在集合了这所有的信息之后, 微生物学家们开始找出 肠道菌群的种类和健康和疾病之间的关联。
【49】And these analyses became a road map for the development of human microbiome transplant therapies, which is essentially ecosystem restoration, but for your gut microbiome.
这些研究为人类菌群移植治疗的发展奠定了基础。 这种治疗其实和生态系统修复很类似, 只不过修复的是肠道菌群。
【50】And these therapies are now on the road to market to treat some of these diseases today.
菌群移植治疗目前正在向临床发展 有望被应用于疾病的治疗。
【51】And so drawing from this work, my team asked, "What would it look like to take the Human Microbiome Project approach, but apply it to the forest?"
被这些研究启发,我的团队开始思考: “把人类微生物计划的研究方式运用到森林中会怎么样?”
【52】What could we discover about the forest carbon cycle?
我们能不能对森林碳循环有更多了解?
【53】Could we identify places where we could actually do belowground microbial restoration, and, in the process, combat climate change?
我们是否能找到并干预需要修复的地下微生物群, (修复森林)来应对气候变化?
【54】Over the past three years, we've been working with forest scientists across Europe to do exactly that.
在过去的三年里, 我们和欧洲的森林科学家们携手研究了这些问题。
【55】In each of these locations, scientists have been documenting forest health for decades.
在这里显示的每一个位置, 科学家们都有着数十年森林健康状况的记录。
【56】And so, we asked our forest research partners to go out to each of these forests and collect a small sample of soil, which they then shipped back to our lab in Zurich so we could extract and sequence DNA,
我们让合作的科学家们 去到这些森林,收集土壤样本, 并寄到我们在苏黎世的实验室。 这样我们就可以提取测序土壤中的DNA,
【57】which allowed us to understand which microorganisms, and particularly fungi, live in each of these forests.
来研究有哪些微生物, 尤其是真菌, 栖息在这些森林中。
【58】And then finally, we used statistics and machine learning to relate which microorganisms live in a forest to a really important forest health metric: tree growth rate and carbon-capture rate aboveground.
最后,我们利用统计学和机器学习, 来寻找有哪些微生物 和森林的健康指数息息相关。 这些健康指数包括:树木生长速度 和地表的固碳率。
【59】Now, once we controlled for the environmental drivers of tree growth - so how warm and wet each of these places is, as well as other variables we know control background site fertility -
在控制影响树木生长的环境变量情况下, 包括每一个实验地的温度、湿度, 和其他对土壤肥沃度有影响的因素。
【60】we discovered that particularly which fungi colonize the roots of these trees is linked to threefold variation in how fast these trees grow, how fast they remove carbon dioxide from the atmosphere.
我们发现树木根系中的共生真菌的种类 对于树木生长率 和固碳速率都有着三倍的影响。
【61】So put another way, these correlations imply that you could have two pine forests, sitting side by side, experiencing the same climate, growing in the same soils.
换句话说, 如果你比较两片位置相邻 有同样的气候和土壤环境的松林,
【62】But if one of them was colonized by the right community of fungi on its roots, it could be growing up to three times as fast as that adjacent forest.
如果其中一片森林有健康的共生菌群, 这片森林会有隔壁森林三倍的生长速度。
【63】And furthermore, these patterns were not driven by the presence of particularly high-performing species or strains, but instead, they were driven by biodiverse and completely different communities of fungi.
更重要的是,能够促进森林生长的 并不是特定种类的真菌, 而是有着丰富生物多样性,但种类却不尽相同的菌群。
【64】And so these fungal signatures are super exciting to us because they imply an opportunity to manage, and in many cases, actually rewild the forest fungal microbiome.
这项关于真菌的发现令人激动, 因为这意味着我们有可能控制, 并有很大机会修复森林的微生物群。
【65】So, for example, can we reintroduce fungal biodiversity into a managed timber forestry landscape?
打个比方,我们是否可以往工业原料林里, 重新引进有多样性的真菌菌群?
【66】And in the process, can we make those trees grow faster?
我们能否帮助这些树木生长得更快?
【67】Can we make them capture more carbon in their tree stems and in their soils?
我们能否加快这些树木的在树干和土壤的固碳率?
【68】Can we rewild the soil and combat climate change?
我们能否修复土壤的生物多样性,延缓气候变化?
【69】And these aren't just rhetorical questions - we've actually started doing this.
这些并不仅仅是虚无缥缈的假设, 我们的团队已经开始了尝试。
【70】So this is one of our field trials in Wales, in the United Kingdom.
这是我们在英国威尔士的一片实验区。
【71】It's run in collaboration with the charity there called the Carbon Community.
我们和当地一家叫做carbon community的慈善机构 共同管理着这片区域。
【72】It's 28 acres, or 11 hectares, and it's set up as a block-randomized controlled trial.
这片实验区占地28英亩,也就是11公顷。 被划分成区块随机分到实验组和对照组,
【73】This is analogous to how you would run a drug trial, but in this case, it's for trees instead of people.
这和药物开发的实验相似, 但这里我们实验的对象是树而不是人。
【74】And here, we do a pretty straightforward experiment.
我们在这片区域做的实验很简单:
【75】We either plant trees, business as usual - which is just direct planting of seedlings into the ground - or we plant trees, and at the moment of planting, we add a small handful of soil.
我们要么就是直接种树, 和一般的方法一样, 把树苗埋到土里; 或者我们在种树的同时, 往里面加一小捧土。
【76】But it's not just any soil.
我们所添加的并不是寻常的土,
【77】It's soil sourced from a forest our analyses have identified as harboring potentially high-performing fungi.
而是从我们之前的实验中 找到的有着健康菌群的森林的土壤。
【78】So since we reintroduced microbial biodiversity into some of these sites, we've observed that where we actually did that, we've been able to accelerate tree growth and carbon capture in tree stems by 30 to 70 percent, depending on the tree species.
从我们在这些实验区域重新引入了微生物多样性之后, 我们观察到, 根据树的种类,树木的生长速度和固碳率 有百分之30到70的提高。
【79】Or put another way - where we manipulated and rewilded the invisible microbiology of this place, we've begun to change how that entire place works.
换句话说, 我们用干预”看不见“的微生物的方式 完全改变了这个生态体系的运作方式。
【80】Now it's important to emphasize that we're really excited about these findings, but we also understand they're still early.
在这里我们要强调, 尽管这些发现令人激动, 我们还在研究的初期阶段。
【81】We want to see many more large-scale field trials and many more locations with many more years of data.
我们需要收集更多,更大范围的实验区域的数据, 也需要来自于更多地理位置,更多年的数据。
【82】However, beyond just these carbon and climate outcomes, I think the most exciting thing here is that we can actually do this with wild and native and biodiverse combinations of microorganisms.
除了对碳排放和气候的影响, 我认为这项发现最令人激动的地方, 是我们可以利用自然生长、生物多样的微生物群。
【83】And while we pointed this approach at forestry, in principle, this kind of science has the potential to generalize to all of our managed landscapes.
虽然我们的初衷是修复森林, 但理论上这些发现也有潜力被应用到所有人为管理的地貌环境。
【84】We can begin asking questions like, "What does a healthy agricultural microbiome look like?"
我们可以开始提出类似的问题: 【“健康的农业微生物群应该是怎样的?”】
【85】Thinking across both food and forest agriculture.
来运用到农业和林业中。
【86】And there's reason to think a biodiversity-first approach may be particularly powerful here.
重视生物多样性的修复方式 另一个很有潜力的原因,
【87】And that's because the history of agriculture has been an exercise in reductionism.
是由于农业在历史的发展过程中 往往是做减法的。
【88】We've identified high-performing plant species, and then strains, and then we've selectively bred them, and now we genetically modify them.
我们一直在寻找高产的作物种类和品系, 筛选、培育、并改良他们的基因,
【89】And finally, we plant those organisms out in vast monocultures.
然后我们大面积地单一栽培这些作物。
【90】So a single plant species as far as you can see.
也就是说,这些作物都是单一的品种。
【91】And to be clear, this has produced very productive agroecosystems.
在这里要澄清一点, 历史上的这种做法孕育了非常高效的农业生态系统。
【92】But it's also produced ecosystems we're coming to understand are remarkably fragile.
但我们开始发现, 这些生态系统也同时非常的脆弱。
【93】Systems increasingly sensitive to extreme climate events, novel pathogens.
它们对极端气候和新的病原都异常敏感,
【94】Systems incredibly reliant on chemical inputs, we're coming to understand have really serious externalities.
非常依赖化学药物的投放, 而这些药物(对环境和生态系统等)有着严重的副作用。
【95】So we now have the data, computational tools and the ecological theory to start going the other way, to lean into biodiversity and complexity.
现在我们有了数据,计算工具 和生态理论的支持, 可以取生物多样性和复杂性为己用。
【96】And once we do, the question really becomes, by rewilding our soils, can we make our managed food and forest landscapes reservoirs of belowground biodiversity?
一旦我们这样做了,我们面对的问题就变成了, 如果我们重新引进自然的土壤, 我们能否重塑农林业微生物群的生物多样性?
【97】And in the process, can we enhance yields and carbon capture and all the other services we ask of these ecosystems?
在这个过程中, 我们是否可以提高(作物)产量、(森林)固碳率 和其他这些生态系统的功效?
【98】I think there's a lot of reason to be incredibly hopeful here.
我认为我们有很多对这个研究抱以期待的理由。
【99】And I think we also shouldn't be so surprised that these microscopic organisms have the potential for such enormous, ecosystem-scale effects.
这些微观生物对整个庞大的生态系统的影响力, 其实也应该是意料之中。
【100】And that's because we've known now, really for a long time, that forests are fungi.
因为我们其实早就理解了, 森林中真菌的重要性。
【101】And they're incredibly biodiverse communities of bacteria and archaea and protists and microscopic soil animals and viruses.
森林中也有种类繁多的细菌、古细菌、 原生生物、微观动物和病毒。
【102】Soil is the literal foundation of terrestrial ecosystems, and the microbial life that inhabits soil represents some of the most complex and biodiverse communities of life on Earth.
土壤是森林生态系统的基础, 土壤中的微生物 是地球上最复杂也多样的生态群落之一。
【103】For the first time, DNA sequencing is turning the lights on belowground.
DNA测序史无前例地推进了我们对地下生态学的认知,
【104】It's allowing us to see these organisms in unprecedented detail and at unprecedented scales.
我们对这些微生物有了更详细、更全面的了解。
【105】Imagine studying plant biology, but you never really knew if you're looking at a sequoia tree or a sphagnum moss.
这就好比如果你在学习植物学, 但由于技术限制,你以前一直不知道你研究的是美洲杉 还是泥炭苔藓。
【106】And then, all of a sudden, you did.
然后突然(技术突破),你知道了你在研究的是什么。
【107】That's what's happening right now in global environmental microbiology.
这就是环境微生物学的现状。
【108】And so we should expect this revolution in our understanding of these microscopic organisms, and particularly fungi, to transform how we understand and how we manage our ecosystems in a foundational way.
因此我们可以展望, 我们在近年对微生物的认知发展, 尤其是对于真菌的研究, 将会从根本上转变我们理解和管理生态系统的方式。
【109】Thank you.
谢谢。