欢迎光临散文网 会员登陆 & 注册

函数(中)

2023-07-17 17:23 作者:24bs  | 我要投稿

%5Cexists%20x%5Cin%20%5B0%2C2%5D%5C%20s.t.%20(e-1)%5Cln%20a%5Cge%20ae%5E%7B1-x%7D%2Be(x-1)-x,求 a 取值范围。

%5Ccdots%5CLeftrightarrow%20e(%5Cln%20a%2B1-x)%2B1%5Cge%20e%5E%7B%5Cln%20a%2B1-x%7D%2B%5Cln%20a%2B1-x

令 t%5Ctriangleq%20%5Cln%20a%2B1-x%5Cin%20%5B%5Cln%20a-1%2C%5Cln%20a%2B1%5D,则 et%2B1%5Cge%20e%5Et%2Bt。研究 f(t)%3De%5Et%2B(1-e)t 即可。

a%5Cin%20%5B0%2C4%5Df(x)%3D%5Cdfrac%7B4x-a%7D%7Bx%5E2%2B1%7D。(1) 当 x%3E0 时,证明:f(x)%5Cle%20%5Cdfrac%7Ba%7D%7B2%7Dx-a%2B2;(2) 设 x_1%2Cx_2%5Cin%20%5Cmathbb%20R,若 m%5Cin%20%5Cmathbb%20R 满足 f(x_1)f(x_2)%3D-m%5E2,证明:f(m-a)-f(1)%3C%5Cdfrac18

(1) 法一:直接移项后因式分解;法二:以 a 为主元,然后因式分解

(2) 令t%5Ctriangleq%204x-a,则 f(x)%3D%5Cdfrac%7B16t%7D%7Bt%5E2%2B2at%2Ba%5E2%2B16%7D,故 f(x)%5Cin%20%5B%5Cdfrac%7B8%7D%7Ba-%5Csqrt%7Ba%5E2%2B16%7D%7D%2C%5Cdfrac%7B8%7D%7Ba%2B%5Csqrt%7Ba%5E2%2B16%7D%7D%5D。故 -m%5E2%5Cge%20f_%7B%5Cmin%7D%5Ccdot%20f_%7B%5Cmax%7D%3D-4,即 m%5Cin%20%5B-2%2C2%5D。之后分 m-a%5Cle%20(%5Ctext%7Bor%7D%20%3E)%5C%20%200 讨论即可。(其中需要使用 (1) 中结论)

偶函数 f(x) 定义域为 %5Cmathbb%20R%5Cforall%20x%5Cin%20%5B0%2C%2B%5Cinfty)2f(x)%2Bxf'(x)%3E0。判断以下结论正确性:

......

对于此类题目,参见 https://www.bilibili.com/video/BV1UA4y1f7TZ/

a%2Cb%3E0ae%5E%7Ba%2B1%7D%2Bb%3Cb%5Cln%20b,证明:b%3Ee%5E%7Ba%2B1%7D

%5Ccdots%5CLeftrightarrow%20e%5Ea%5Cln%20e%5Ea%3C%5Cdfrac%7Bb%7D%7Be%7D(%5Cln%20b-1)%3D%5Cdfrac%7Bb%7D%7Be%7D%5Cln%20%5Cdfrac%7Bb%7D%7Be%7D,对 f(x)%3Dx%5Cln%20x 进行简单分析即可。

f(x)%3Dx%5E2-1 与 g(x)%3Da%5Cln%20x-1 的图像存在公切线,求 a%5Cin%20%5Cmathbb%20R_%2B 取值范围。

设公切线与两图像的切点分别为 (x_1%2Cx_1%5E2-1)(x_2%2Ca%5Cln%20x_2-1)f'(x)%3D2xg'(x)%3D%5Cdfrac%7Ba%7D%7Bx%7D,故公切线既为直线 y%3D2x_1(x-x_1)%2Bx_1%5E2-1,也为直线 y%3D%5Cdfrac%7Ba%7D%7Bx_2%7D(x-x_2)%2Ba%5Cln%20x_2-1。对比系数得 2x_1%3D%5Cdfrac%7Ba%7D%7Bx_2%7D-x_1%5E2-1%3D-a%2Ba%5Cln%20x_2-1,故 %5Cdfrac%7Ba%7D%7B4%7D%3Dx_2%5E2(1-%5Cln%20x_2)。对 h(x)%3Dx%5E2(1-%5Cln%20x) 进行简单分析即可。

f(x) 定义域为 %5Cmathbb%20Rf(x%2By)%2Bf(x-y)%3Df(x)f(y)f(1)%3D1,求 %5Csum%5Climits_%7Bk%3D1%7D%5E%7B22%7Df(k)

  • 法一:注意到 2%5Ccos(x%2By)%2B2%5Ccos(x-y)%3D2%5Ccos%20x%5Ccdot2%5Ccos%20y,故可设 f(x)%3D2%5Ccos%20%5Cdfrac%7B%5Cpi%20x%7D3。后略。

  • 法二:令 y%3D1 得 f(x%2B1)%2Bf(x-1)%3Df(x),即 f(x%2B2)-f(x%2B1)%3D-f(x)。同理 f(x%2B2)%3Df(x%2B3)%2Bf(x%2B1),故 f(x%2B3)%3D-f(x),则 f(x) 周期为 6。后略。

f(x)%3D(1-x%5E2)(x%5E2%2Bax%2Bb) 的图像关于直线 x%3D-2 对称,求 f(x) 最大值。

利用必要性探路,通过代入来求出 a%2Cb

f(x)%2Cg(x) 定义域为 %5Cmathbb%20Rf(x)%2Bg(2-x)%3D5g(x)-f(x-4)%3D7。若 g(x) 图像关于直线 x%3D2 对称,g(2)%3D4,求 %5Csum%5Climits_%7Bk%3D1%7D%5E%7B22%7Df(k)

可知 f(x) 周期为 4,随后玩一玩就能得到答案。


函数(中)的评论 (共 条)

分享到微博请遵守国家法律