欢迎光临散文网 会员登陆 & 注册

极化码数学原理(三)-鞅过程 Martingale

2023-07-17 01:21 作者:乐吧的数学  | 我要投稿

(录制的视频在:https://www.bilibili.com/video/BV1e14y1979X/)

随机过程:

X%20%3D%20%5C%7BX_1%2CX_2%2C%5Ccdots%2CX_N%5C%7D%20%5Ctag%201

随机过程研究的是不同时间点的随机变量之间的关系,下面三个例子的随机过程体现了随机变量之间的不同的关系:


(1)  X(t) = t ,  以概率 1



(2)    (X(t) = t , for all t ), 依概率 1/2

        (X(t) = -t , for all t ), 依概率 1/2 



(3)  for each t

X(t)%3D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%20%20t%20%26%20with%20%5Cquad%20probability%5Cquad%201%2F2%20%5C%5C%20%5C%5C%0A%0A%20%20-t%26%20with%20%5Cquad%20probability%5Cquad%201%2F2%0A%0A%5Cend%7Bcases%7D






另外一种随机过程是马尔科夫随机过程, n+1 时刻的概率特性只由 n 时刻的状态决定,而与 n 时刻之前的状态无关。

X_%7Bn%2B1%7D%7CX_n%2CX_%7Bn-1%7D%2C%5Ccdots%20%2CX_0%20-----%3E%20X_%7Bn%2B1%7D%7CX_n%20%20%20%5Ctag%202



鞅过程 (Martingale) 是从数学期望的角度来看随机变量之间的关系的:

E(X_%7Bn%2B1%7D%7CX_n%2CX_%7Bn-1%7D%2C%5Ccdots%20%2CX_0)%20%3D%20X_n%20%20%5Ctag%203





例如:X1,X2,.... 是独立同分布的随机变量,满足如下的分布:


X_i%3D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%20%202%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B1%7D%7B3%7D%20%5C%5C%20%5C%5C%0A%0A%20%20%5Cfrac%7B1%7D%7B2%7D%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B2%7D%7B3%7D%0A%0A%5Cend%7Bcases%7D



令 Y_0%3D1

Y_k%3D%5Cprod_%7Bi%3D1%7D%5EK%20X_i

那么随机过程 %5C%7BY_0%2CY_1%2CY_2%2C%5Ccdots%5C%7D  就是一个鞅过程。


%5Cbegin%7Baligned%7D%0A%0AE%5BY_%7Bk%2B1%7D%7CY_k%2CY_%7Bk-1%7D%2C%5Ccdots%2CY_0%5D%20%0A%0A%26%3DE%5BX_%7Bk%2B1%7D%5Cprod_%7Bi%3D1%7D%5EK%20X_i%7CX_k%2CX_%7Bk-1%7D%2C%5Ccdots%2CX1%5D%20%20%5C%5C%0A%0A%26%3D%20%5Cprod_%7Bi%3D1%7D%5EK%20X_i%20E%5BX_%7Bk%2B1%7D%7CX_k%2CX_%7Bk-1%7D%2C%5Ccdots%2CX1%5D%20%5C%5C%20%5C%5C%0A%0A%26%3D%20Y_k%20E%5BX_%7Bk%2B1%7D%5D%20%5C%5C%20%5C%5C%0A%0A%26%3DY_k%0A%0A%5Cend%7Baligned%7D

上鞅过程

E(X_%7Bn%2B1%7D%7CX_n%2CX_%7Bn-1%7D%2C%5Ccdots%20%2CX_0)%20%5Cle%20X_n%20%20%5Ctag%204


上面鞅过程的例子中,如果随机变量取值的概率有一点变化,则是上鞅过程:

X_i%3D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%20%202%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%20%5C%5C%0A%0A%20%20%5Cfrac%7B1%7D%7B2%7D%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B3%7D%7B4%7D%0A%0A%5Cend%7Bcases%7D



下鞅过程

E(X_%7Bn%2B1%7D%7CX_n%2CX_%7Bn-1%7D%2C%5Ccdots%20%2CX_0)%20%5Cge%20X_n%20%20%5Ctag%205

同理,如果鞅过程的例子中,随机变量的取值有一点变化,则是下鞅过程:

X_i%3D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%20%202%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B5%7D%7B12%7D%20%5C%5C%20%20%5C%5C%0A%0A%20%20%5Cfrac%7B1%7D%7B2%7D%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B7%7D%7B12%7D%0A%0A%5Cend%7Bcases%7D


极化码数学原理(三)-鞅过程 Martingale的评论 (共 条)

分享到微博请遵守国家法律