欢迎光临散文网 会员登陆 & 注册

【数学分析】520问题解答

2023-05-21 23:25 作者:Ice_koucha  | 我要投稿

昨天(5月20号)的动态Ice_koucha的动态 - 哔哩哔哩 (bilibili.com)

问题:%5Cfrac%7B%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(2023-x)%7D%20%7D%7B%5Csqrt%7Bln(189%2Bx)%7D%20%2B%5Csqrt%7Bln(2023-x)%7D%7Ddx-3%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D1%7D%5En%20%5Csqrt%5Bj%5D%7Bn%7D%20%20%7D%7Bn%7D%20%20%20-%5Clim_%7Bx%5Cto0%7D%20%5Cint_%7B0%7D%5E%7Bx%7D%5Cfrac%7Bsint%7D%7B%5Csqrt%7B4%2Bt%5E2%7D%20%5Cint_%7B0%7D%5E%7Bx%7D(%5Csqrt%7Bt%2B1%7D-1%20)dt%20%7D%20%20%20dt%7D%7B%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B(n%2B114514)(n-1919810)%7D%7B%5Csum_%7Bi%3D1%7D%5En%5Csqrt%7Bi%7D%20%5Ccdot%20%5Csum_%7Bk%3D1%7D%5En%5Cfrac%7B1%7D%7B%5Csqrt%7Bk%7D%20%7D%20%20%20%7D%20%20%7D%20

Part%E2%85%A0

%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(2023-x)%7D%20%7D%7B%5Csqrt%7Bln(189%2Bx)%7D%20%2B%5Csqrt%7Bln(2023-x)%7D%7Ddx

(引理1)区间再现公式:

%5Cint_%7Ba%7D%5E%7Bb%7D%20f(x)dx%3D%5Cint_%7Ba%7D%5E%7Bb%7D%20f(a%2Bb-x)dx

证明:令a%2Bb-x%3Dt,则x%3Da%2Bb-t

所以%5Cint_%7Ba%7D%5E%7Bb%7D%20f(a%2Bb-x)dx%3D%5Cint_%7Bb%7D%5E%7Ba%7D%20f(t)d(a%2Bb-t)%3D%5Cint_%7Ba%7D%5E%7Bb%7D%20f(t)dt

因为定积分的值与字母无关,证毕。

%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(2023-x)%7D%20%7D%7B%5Csqrt%7Bln(189%2Bx)%7D%20%2B%5Csqrt%7Bln(2023-x)%7D%7Ddx%3D%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(188%2Bx)%7D%20%7D%7B%5Csqrt%7Bln(2023-x)%7D%2B%5Csqrt%7Bln(189%2Bx)%7D%20%20%7Ddx%20


%3D%5Cfrac%7B1%7D%7B2%7D%20(%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(2023-x)%7D%20%7D%7B%5Csqrt%7Bln(189%2Bx)%7D%20%2B%5Csqrt%7Bln(2023-x)%7D%7Ddx%2B%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(188%2Bx)%7D%20%7D%7B%5Csqrt%7Bln(2023-x)%7D%2B%5Csqrt%7Bln(189%2Bx)%7D%20%20%7Ddx%20)

%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cint_%7B520%7D%5E%7B1314%7D%20dx

%3D397

Part%E2%85%A1

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D1%7D%5En%20%5Csqrt%5Bj%5D%7Bn%7D%20%7D%7Bn%7D%20

%20%20%20%5Coverset%7BStolz%E5%AE%9A%E7%90%86%7D%7B%3D%7D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D1%7D%5En%20%5Csqrt%5Bj%5D%7Bn%7D-%5Csum_%7Bj%3D1%7D%5E%7Bn%2B1%7D%20%5Csqrt%5Bj%5D%7Bn%2B1%7D%7D%7Bn%2B1-n%7D%20

%3D2%2B%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Csum_%7Bj%3D2%7D%5En%20(%5Csqrt%5Bj%5D%7Bn%2B1%7D-%5Csqrt%5Bj%5D%7Bn%7D%20)

(引理2)当m%3E1时,有下列不等式成立:

%5Cfrac%7B1%7D%7Bm%7D%5Ccdot%20%5Cfrac%7B1%7D%7B(n%2B1)%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20%20%3C%5Csqrt%5Bm%5D%7Bn%2B1%7D%20-%5Csqrt%5Bm%5D%7Bn%7D%20%3C%5Cfrac%7B1%7D%7Bm%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7Bn%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20

证明:令f(t)%3D%5Csqrt%5Bm%5D%7Bt%7D%20(t%5Cgeq%201),在t%3Dx%2B1t%3Dx上使用Lagrange中值定理,有

f(x%2B1)-f(x)%3Df'(%20%5Cxi%20)%3D%5Cfrac%7B1%7D%7Bm%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B%5Cxi%20%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20(其中%5Cxi%20%5Cin(x%2Cx%2B1))

g(x)%3D%5Cfrac%7B1%7D%7Bx%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%7D%20(x%5Cgeq%201),显然g(x)严格单调递减。

所以有

%5Cfrac%7B1%7D%7Bm%7D%5Ccdot%20%5Cfrac%7B1%7D%7B(x%2B1)%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20%20%3C%5Cfrac%7B1%7D%7Bm%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B%5Cxi%20%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20%20%3C%5Cfrac%7B1%7D%7Bm%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7Bx%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20

将上述不等式中x换为n,证毕。

0%3C%5Csum_%7Bj%3D2%7D%5En%20(%5Csqrt%5Bj%5D%7Bn%2B1%7D-%5Csqrt%5Bj%5D%7Bn%7D%20)%3C%5Csum_%7Bj%3D2%7D%5En%20%5Cfrac%7B1%7D%7Bj%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7Bn%5E%7B1-%5Cfrac%7B1%7D%7Bj%7D%20%7D%20%7D%20%3C%5Cfrac%7B%5Csum_%7Bj%3D2%7D%5En%20%5Cfrac%7B1%7D%7Bj%7D%20%7D%7B%5Csqrt%7Bn%7D%20%7D%20

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D2%7D%5En%20%5Cfrac%7B1%7D%7Bj%7D%20%7D%7B%5Csqrt%7Bn%7D%20%7D%5Coverset%7BStolz%E5%AE%9A%E7%90%86%7D%7B%3D%7D%0A%5Clim_%7Bn%5Cto%E2%88%9E%7D%5Cfrac%7B%5Csum_%7Bj%3D2%7D%5E%7Bn%2B1%7D%5Cfrac%7B1%7D%7Bj%7D-%5Csum_%7Bj%3D2%7D%5En%20%5Cfrac%7B1%7D%7Bj%7D%20%7D%7B%5Csqrt%7Bn%2B1%7D-%5Csqrt%7Bn%7D%20%7D%20%3D2%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csqrt%7Bn%7D%20%7D%7Bn%2B1%7D%20%3D0

由夹逼定理知%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Csum_%7Bj%3D2%7D%5En%20(%5Csqrt%5Bj%5D%7Bn%2B1%7D-%5Csqrt%5Bj%5D%7Bn%7D%20)%3D0

所以%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D1%7D%5En%20%5Csqrt%5Bj%5D%7Bn%7D%20%7D%7Bn%7D%20%3D2

Part%E2%85%A2

%5Clim_%7Bx%5Cto0%7D%20%5Cint_%7B0%7D%5E%7Bx%7D%5Cfrac%7Bsint%7D%7B%5Csqrt%7B4%2Bt%5E2%7D%20%5Cint_%7B0%7D%5E%7Bx%7D(%5Csqrt%7Bt%2B1%7D-1%20)dt%20%7D%20%20dt

%5Coverset%7BL'H%C3%B4pital%7D%7B%3D%7D%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7Bsinx%7D%7B%5Csqrt%7B4%2Bx%5E2%20%7D(%5Csqrt%7Bx%2B1%7D-1%20)%20%7D%20

%3D%5Cfrac%7B1%7D%7B2%7D%20%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7Bx%7D%7B%5Csqrt%7Bx%2B1%7D-1%20%7D%20%20

%3D%5Cfrac%7B1%7D%7B2%7D%20%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7Bx%7D%7B%5Cfrac%7B1%7D%7B2%7Dx%20%7D%20

%3D1

Part%E2%85%A3

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B(n%2B114514)(n-1919810)%7D%7B%5Csum_%7Bi%3D1%7D%5En%5Csqrt%7Bi%7D%20%5Ccdot%20%5Csum_%7Bk%3D1%7D%5En%5Cfrac%7B1%7D%7B%5Csqrt%7Bk%7D%20%7D%20%20%20%7D%20%20

%3D%5Cfrac%7B1%7D%7B%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%5Csqrt%7Bi%7D%20%5Ccdot%20%5Csum_%7Bk%3D1%7D%5En%5Cfrac%7B1%7D%7B%5Csqrt%7Bk%7D%20%7D%20%7D%7Bn%5E2%20%7D%20%20%7D%20

%3D%5Cfrac%7B1%7D%7B%5Clim_%7Bn%5Cto%E2%88%9E%7D%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%5Csqrt%7Bi%7D%20%20%7D%7Bn%5E%5Cfrac%7B3%7D%7B2%7D%20%20%7D%5Ccdot%20%20%20%5Clim_%7Bn%5Cto%E2%88%9E%7D%5Cfrac%7B%5Csum_%7Bk%3D1%7D%5En%5Cfrac%7B1%7D%7B%5Csqrt%7Bk%7D%20%7D%20%20%7D%7Bn%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%7D%20%7D%20

%3D%5Cfrac%7B1%7D%7B%5Cint_%7B0%7D%5E%7B1%7D%5Csqrt%7Bx%7D%20dx%5Ccdot%20%20%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%20%7Ddx%20%20%7D%20

=%5Cfrac%7B1%7D%7B%5Cfrac%7B2%7D%7B3%7D%5Ccdot%202%20%20%7D%20

=%5Cfrac%7B3%7D%7B4%7D%20

所以原式

%3D%5Cfrac%7B397-3%5Ctimes2-1%20%7D%7B%5Cfrac%7B3%7D%7B4%7D%20%7D%20%0A

%3D520

【数学分析】520问题解答的评论 (共 条)

分享到微博请遵守国家法律