欢迎光临散文网 会员登陆 & 注册

抛弃韦达,纵享丝滑(2021浙江圆锥曲线)

2022-08-20 19:40 作者:数学老顽童  | 我要投稿

(2021浙江,21)如图,已知F是抛物线y%5E2%3D2pxp%3E0)的焦点,M是抛物线的准线与x轴的交点,且%5Cleft%7C%20MF%20%5Cright%7C%3D2.

(1)求抛物线的方程;

(2)设过点F的直线交抛物线于AB两点,若斜率为2的直线lMAMBABx轴依次交于点PQRN,且满足%5Cleft%7C%20RN%20%5Cright%7C%5E2%3D%5Cleft%7C%20PN%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20QN%20%5Cright%7C,求直线lx轴上截距的取值范围.

解:(1)易知p%3D2

所以抛物线的方程为y%5E2%3D4x.

(2)分别设

直线MAx%2B1%3D%5Clambda%20y

直线MBx%2B1%3D%5Cmu%20y

直线ABx-1%3Dmy.

因为点A在直线MAAB上,所以

x_A%2B1%3D%5Clambda%20y_A……%5Coplus%20

x_A-1%3Dmy_A……%5Cotimes%20

%5Coplus%20%5E2-%5Cotimes%20%5E2,得

%5Cleft(%20x_A%2B1%20%5Cright)%20%5E2-%5Cleft(%20x_A-1%20%5Cright)%20%5E2%3D%5Clambda%20%5E2y_%7BA%7D%5E%7B2%7D-m%5E2y_%7BA%7D%5E%7B2%7D

化简得4x_A%3D%5Cleft(%20%5Clambda%20%5E2-m%5E2%20%5Cright)%20y_%7BA%7D%5E%7B2%7D

%5Clambda%20%5E2-m%5E2%3D1

%5Ccolor%7Bred%7D%7B%5Clambda%20%5E2%3Dm%5E2%2B1%7D(显然%5Ccolor%7Bred%7D%7B%5Clambda%20%5E2%5Cgeqslant%201%7D).


同理可得%5Ccolor%7Bred%7D%7B%5Cmu%20%20%5E2%3Dm%5E2%2B1%7D


又因为%5Cmu%20%5Cne%20%5Clambda%20,所以%5Ccolor%7Bred%7D%7B%5Cmu%20%3D-%5Clambda%20%7D.

设直线l的方程为x%3D%5Cfrac%7B1%7D%7B2%7Dy%2Bn

与直线AB联立,

解得y_R%3D%5Cfrac%7B2%5Cleft(%20n-1%20%5Cright)%7D%7B2m-1%7D

联立直线l与直线MA

解得y_P%3D%5Cfrac%7B2%5Cleft(%20n%2B1%20%5Cright)%7D%7B2%5Clambda%20-1%7D

同理y_Q%3D%5Cfrac%7B2%5Cleft(%20n%2B1%20%5Cright)%7D%7B2%5Cmu%20-1%7D

%5Cleft%7C%20RN%20%5Cright%7C%5E2%3D%5Cleft%7C%20PN%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20QN%20%5Cright%7C

等价于%5Cleft%7C%20y_R%20%5Cright%7C%5E2%3D%5Cleft%7C%20y_P%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20y_Q%20%5Cright%7C,即

%5Cleft%7C%20%5Cfrac%7B2%5Cleft(%20n-1%20%5Cright)%7D%7B%5Cleft(%202m-1%20%5Cright)%7D%20%5Cright%7C%5E2%3D%5Cleft%7C%20%5Cfrac%7B2%5Cleft(%20n%2B1%20%5Cright)%7D%7B2%5Clambda%20-1%7D%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20%5Cfrac%7B2%5Cleft(%20n%2B1%20%5Cright)%7D%7B2%5Cmu%20-1%7D%20%5Cright%7C

%5Ccolor%7Bred%7D%7B%5Cmu%20%3D-%5Clambda%20%7D代入,得

%5Cfrac%7B%5Cleft(%20n-1%20%5Cright)%20%5E2%7D%7B%5Cleft(%202m-1%20%5Cright)%20%5E2%7D%3D%5Cfrac%7B%5Cleft(%20n%2B1%20%5Cright)%20%5E2%7D%7B4%5Clambda%20%5E2-1%7D,

再将%5Ccolor%7Bred%7D%7B%5Clambda%20%5E2%3Dm%5E2%2B1%7D代入,得

%5Cfrac%7B%5Cleft(%20n-1%20%5Cright)%20%5E2%7D%7B%5Cleft(%202m-1%20%5Cright)%20%5E2%7D%3D%5Cfrac%7B%5Cleft(%20n%2B1%20%5Cright)%20%5E2%7D%7B4m%5E2%2B3%7D

%5Cleft(%20%5Cfrac%7Bn%2B1%7D%7Bn-1%7D%20%5Cright)%20%5E2%3D%5Cfrac%7B4m%5E2%2B3%7D%7B%5Cleft(%202m-1%20%5Cright)%20%5E2%7D

因为

%5Cfrac%7B4m%5E2%2B3%7D%7B%5Cleft(%202m-1%20%5Cright)%20%5E2%7D%3D%5Cleft(%20%5Cfrac%7B2%7D%7B2m-1%7D%20%5Cright)%20%5E2%2B%5Cfrac%7B2%7D%7B2m-1%7D%2B1%5Cgeqslant%20%5Cfrac%7B3%7D%7B4%7D

所以%5Cleft(%20%5Cfrac%7Bn%2B1%7D%7Bn-1%7D%20%5Cright)%20%5E2%5Cgeqslant%20%5Cfrac%7B3%7D%7B4%7D

解得:

n%5Cin%20%5Cleft(%20-%5Cinfty%20%2C-7-4%5Csqrt%7B3%7D%20%5Cright%5D%20%5Ccup%20%5Cleft%5B%20-7%2B4%5Csqrt%7B3%7D%2C1%20%5Cright)%20%5Ccup%20%5Cleft(%201%2C%2B%5Cinfty%20%5Cright)%20.


抛弃韦达,纵享丝滑(2021浙江圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律