欢迎光临散文网 会员登陆 & 注册

余弦函数n倍角的那些高级公式

2022-11-27 14:16 作者:fangquping  | 我要投稿

    对于三角函数的n倍角的公式,高中生一般都学过,太俗的今天就不谈了,和大家探讨下那些很少见的余弦n倍角公式

    首先要说一下棣莫弗公式,即

%5Ccos%20nx%3D%5Ccos%5Enx-C_n%5E2%5Ccos%5E%7Bn-2%7Dx%20%5Csin%5E2%20x%2BC_n%5E4%5Ccos%5E%7Bn-4%7Dx%5Csin%5E4%20x-%5Ccdots

这个比较重要,今天的公式大多由它推导而得,这个公式是怎么来的呢?要借助欧拉公式

e%5E%7Bix%7D%3D%5Ccos%20x%2Bi%5Csin%20x

e%5E%7Binx%7D%3D(%5Ccos%20x%2Bi%5Csin%20x)%5En%3D%5Ccos%7Bnx%7D%2Bi%5Csin%20%7Bnx%7D

中间部分展开,得

%5Ccos%20x%2BiC_n%5E1%5Ccos%5E%7Bn-1%7D%20x%5Csin%20x-C_n%5E2%5Ccos%5E%7Bn-2%7D%20x%5Csin%5E2%20x-%5Ccdots

采用求和符号,我们得到如下等式

%5Csum_%7Bk%3D0%7D%5Eni%5E%7Bk%7DC_n%5Ek%5Ccos%5E%7Bn-k%7Dx%20%5Csin%20%5Ekx%20%3D%5Ccos%7Bnx%7D%2Bi%5Csin%7Bnx%7D

由于i是虚数单位,根据它的周期关系,有

%5Csum_%7B%5Cfrac%7Bn%7D%7B2%7D%5Cge%20k%5Cge%200%7D(-1)%5E%7Bk%7DC_n%5E%7B2k%7D%5Ccos%5E%7Bn-2k%7Dx%20%5Csin%20%5E%7B2k%7Dx%20%2B

i%20%5Csum_%7B%5Cfrac%7Bn-1%7D%7B2%7D%5Cge%20k%5Cge%200%7D(-1)%5E%7Bk%7DC_n%5E%7B2k%2B1%7D%5Ccos%5E%7Bn-2k-1%7Dx%20%5Csin%20%5E%7B2k%2B1%7Dx

%3D%5Ccos%7Bnx%7D%2Bi%5Csin%7Bnx%7D

比较实部能得到前面的棣莫弗公式,这里就不详述了。

下面推导一些高能公式

当n为奇数时

%5Ccos%20%7Bnx%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkC_n%5E%7B2k%7D%5Ccos%20%5E%7Bn-2k%7Dx%5Csin%5E%7B2k%7Dx

%3D%5Ccos%20x%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkC_n%5E%7B2k%7D(1-%5Csin%5E2%20x)%20%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D-k%7D%5Csin%5E%7B2k%7Dx

除了前面有公因式cos x,后面可化成关于sin²x的式子,这样得出余弦n倍角的式子,

为了计算正弦系数,再引入系数数列R,设

%5Ccos%20nx%3D%5Ccos%20x%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%7Dx

对比余弦n倍角的式子,可知

R_0%3D1

R_1%3D%5Cfrac%7Bn%5E2-1%7D%7B2%7D

两边求导,得

-n%5Csin%20nx%3D-%5Csin%20x-%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%2B1%7Dx%2B

2(1-%5Csin%20%5E2x)%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_kk%5Csin%5E%7B2k-1%7Dx

%3D-%5Csin%20x-%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%2B1%7Dx-

2%5Csum_%7Bk%3D0%7D%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D-1%7D(-1)%5E%7Bk%7DR_%7Bk%2B1%7D(k%2B1)%5Csin%5E%7B2k%2B1%7Dx%20-2%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_kk%5Csin%5E%7B2k%2B1%7Dx

%3D-%5Csin%20x-%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5Ek%5Cleft%20%5B(2k%2B1)R_k%2B2R_%7Bk%2B1%7D(k%2B1)%5Cright%20%5D%5Csin%5E%7B2k%2B1%7Dx

%2B(-1)%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D%7D(n%2B1)R_%7B%5Cfrac%7Bn%2B1%7D2%7D%5Csin%5E%7Bn%7Dx%20-(n%5E2-1)%5Csin%20x

%3D(-1)%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D%7D(n%2B1)R_%7B%5Cfrac%7Bn%2B1%7D2%7D%5Csin%5E%7Bn%7Dx%20-

%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5Ek%5Cleft%20%5B(2k%2B1)R_k%2B2R_%7Bk%2B1%7D(k%2B1)%5Cright%20%5D%5Csin%5E%7B2k%2B1%7Dx

为了得到递推关系,两边再求导得

-n%5E2%5Ccos%20nx%3D(-1)%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D%7Dn(n%2B1)R_%7B%5Cfrac%7Bn%2B1%7D2%7D%5Csin%5E%7Bn-1%7Dx%20%5Ccos%20x-

%5Csum_%7Bk%3D0%7D%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D%7D(-1)%5Ek(2k%2B1)%5Cleft%20%5B(2k%2B1)R_k%2B2R_%7Bk%2B1%7D(k%2B1)%5Cright%20%5D%5Csin%5E%7B2k%7Dx%5Ccos%20x

对比原式可知

-n%5E2(-1)%5EkR_k%3D-(-1)%5Ek(2k%2B1)%5Cleft%20%5B(2k%2B1)R_k%2B2R_%7Bk%2B1%7D(k%2B1)%5Cright%20%5D

n%5E2R_k%3D(2k%2B1)%5E2R_k%2B(2k%2B1)(2k%2B2)R_%7Bk%2B1%7D

R_%7Bk%2B1%7D%3D%5Cfrac%7Bn%5E2-(2k%2B1)%5E2%7D%7B(2k%2B1)(2k%2B2)%7DR_%7Bk%7D

R_0%3D1

R_1%3D%5Cfrac%7Bn%5E2-1%7D%7B%202%7D

R_2%3D%5Cfrac%7B(n%5E2-1)(n%5E2-3%5E2)%7D%7B4!%7D

R_3%3D%5Cfrac%7B(n%5E2-1)(n%5E2-3%5E2)(n%5E2-5%5E2)%7D%7B6!%7D

%5Ccdots

R_k%3D%5Cfrac%7B(n%5E2-1)(n%5E2-3%5E2)%5Ccdots%20%5Bn%5E2-(2k-1)%5E2%5D%7D%7B(2k)!%7D

经检验可知,当n为奇数时,有以下关系

%5Ccos%20nx%3D%5Ccos%20x%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%7D%20x

其中

R_k%3D%5Cfrac%7B(n%5E2-1)(n%5E2-3%5E2)%5Ccdots%20%5Bn%5E2-(2k-1)%5E2%5D%7D%7B(2k)!%7D

R_0%3D1

同理,当n为偶数时,有

%5Ccos%20nx%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5EkC_n%5E%7B2k%7D%5Ccos%20%5E%7Bn-2k%7Dx%5Csin%20%5E%7B2k%7Dx

%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5EkC_n%5E%7B2k%7D(1-%5Csin%5E2%20x)%5E%7B%5Cfrac%7Bn%7D%7B2%7D-k%7D%5Csin%20%5E%7B2k%7Dx

引入数列R,使下列等式成立

%5Ccos%20nx%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%7D%20x

同理可知

R_0%3D1

R_1%3D%5Cfrac%7Bn%5E2%7D%7B2%7D

求二阶导得

-n%5Ccos%5E2x

%3D%20%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5Ek2k(2k-1)R_k%5Csin%20%5E%7B2k-2%7Dx%5Ccos%5E2x

-%5Csum_%7Bk%3D1%7D%5E%7B%5Cfrac%7Bn%7D%7B2%7D%7D(-1)%5Ek2kR_k%5Csin%5E%7B2k%7Dx

%3D%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5Ek2k(2k-1)R_k%5Csin%20%5E%7B2k-2%7Dx

-%5Csum_%7Bk%3D1%7D%5E%7B%5Cfrac%7Bn%7D%7B2%7D%7D(-1)%5Ek4k%5E2R_k%5Csin%5E%7B2k%7Dx

%3D-%5Csum_%7Bk%3D0%7D%5E%7B%5Cfrac%7Bn%7D%7B2%7D-1%7D(-1)%5Ek(2k%2B2)(2k%2B1)R_%7Bk%2B1%7D%5Csin%20%5E%7B2k%7Dx

-%5Csum_%7Bk%3D1%7D%5E%7B%5Cfrac%7Bn%7D%7B2%7D%7D(-1)%5Ek4k%5E2R_k%5Csin%5E%7B2k%7Dx

%3D(-1)%5E%5Cfrac%7Bn%7D%7B2%7D(n%2B2)(n%2B1)R_%7B%5Cfrac%7Bn%7D%7B2%7D%2B1%7D%5Csin%5Enx-

%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5Ek%5Cleft%20%5B(2k%2B2)(2k%2B1)R_%7Bk%2B1%7D%2B4k%5E2R_k%5Cright%20%5D%5Csin%5E%7B2k%7Dx

比较原式可知

-n%5E2(-1)%5EkR_k%3D-(-1)%5Ek%5Cleft%20%5B(2k%2B2)(2k%2B1)R_%7Bk%2B1%7D%2B4k%5E2R_k%5Cright%20%5D

(n%5E2-4k%5E2)R_k%3D(2k%2B2)(2k%2B1)R_%7Bk%2B1%7D

R_%7Bk%2B1%7D%3D%5Cfrac%7Bn%5E2-4k%5E2%7D%7B(2k%2B2)(2k%2B1)%7DR_k

R_0%3D1

R_1%3D%5Cfrac%7Bn%5E2%7D%7B2%7D

R_2%3D%5Cfrac%7Bn%5E2(n%5E2-2%5E2)%7D%7B4!%7D

R_3%3D%5Cfrac%7Bn%5E2(n%5E2-2%5E2)(n%5E2-4%5E2)%7D%7B6!%7D

%5Ccdots

R_k%3D%5Cfrac%7Bn%5E2(n%5E2-2%5E2)%5Ccdots%20%5Bn%5E2-(2k-2)%5E2%5D%7D%7B(2k)!%7D

经检验可知当n为偶数时,有以下关系

%5Ccos%20nx%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%7D%20x

其中

R_k%3D%5Cfrac%7Bn%5E2(n%5E2-2%5E2)(n%5E2-4%5E2)%5Ccdots%20%5Bn%5E2-(2k-2)%5E2%5D%7D%7B(2k)!%7D

R_0%3D1

    这样就证明出余弦n倍角的两个n倍角公式,很冷门吧,只要有耐心、够执着,什么样的公式都能见得到。

    根据这些思路,你能不能结合n为奇数和偶数的情况,写出任意整数n的余弦倍角通用公式呢?如果你是老朋友,会看过相关的视频,下面是证明过程,方法类似,就不赘述了,欢迎支持!






余弦函数n倍角的那些高级公式的评论 (共 条)

分享到微博请遵守国家法律