欢迎光临散文网 会员登陆 & 注册

代数数论笔记(二):二次域和圆域上迹、范和判别式的计算

2023-04-12 18:57 作者:CupsOfCubs  | 我要投稿

本节作为上一节的补充.

在这系列笔记里,最重要的两个例子是二次域(quadratic field)%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)(这里%5C%7B0%2C%201%5C%7D%5Cnot%5Cni%20d%5Cin%5Cmathbb%7BZ%7D无非平凡平方因子)以及圆域(cyclomatic field)%5Cmathbb%7BQ%7D(%0A%5Czeta_p)(这里%5Czeta_pp次单位根,p是奇素数).在这一系列笔记中,我们会不断地将新的理论用在这两个例子上.这两个例子有一个共同的优点,就是他们都是%E5%9C%A8%5Cmathbb%7BQ%7D%E4%B8%8AGalois的,这给我们的讨论带来很大方便.

先来看前者.%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)的所有%5Cmathbb%7BQ%7D嵌入(取决于%0A%5Csqrt%7Bd%7D打到%0A%5Csqrt%7Bd%7D还是%0A-%5Csqrt%7Bd%7D)刚好构成Galois群%5Coperatorname%7BGal%7D%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)%2F%5Cmathbb%7BQ%7D.如果d%3E0,则%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)的所有%5Cmathbb%7BQ%7D嵌入均是实的;如果d%3C0,则%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)的所有%5Cmathbb%7BQ%7D嵌入均是虚的.对里面的一个元素a%2Bb%5Csqrt%7Bd%7D%5C%2C(a%2Cb%5Cin%5Cmathbb%7BQ%7D),其所有共轭元素为a%2Bb%5Csqrt%7Bd%7D%2Ca-b%5Csqrt%7Bd%7D,因此T_%7B%5Cmathbb%7BQ%7D(%5Csqrt%7Bd%7D)%2F%5Cmathbb%7BQ%7D%7D(a%2Bb%5Csqrt%7Bd%7D)%3D(a%2Bb%5Csqrt%7Bd%7D)%2B(a-b%5Csqrt%7Bd%7D)%3D2a%2CN_%7B%5Cmathbb%7BQ%7D(%5Csqrt%7Bd%7D)%2F%5Cmathbb%7BQ%7D%7D(a%2Bb%5Csqrt%7Bd%7D)%3D(a%2Bb%5Csqrt%7Bd%7D)(a-b%5Csqrt%7Bd%7D)%3Da%5E2-b%5E2d.判别式d_%7BL%2FK%7D(%5Calpha)%3D%5Cleft(%5Cdet%5Cbegin%7Bpmatrix%7D1%26a%2Bb%5Csqrt%7Bd%7D%5C%5C1%26a-b%5Csqrt%7Bd%7D%5Cend%7Bpmatrix%7D%5Cright)%5E2%3D4b%5E2d.进一步的一个例子是d%3D-1的情形,此时N_%7B%5Cmathbb%7BQ%7D(%5Csqrt%7B-1%7D)%2F%5Cmathbb%7BQ%7D%7D(a%2Bb%5Csqrt%7B-1%7D)%3Da%5E2%2Bb%5E2与通常的复数的模长是一致的.在下一节我们将看到这一点的威力.

%0A%5Czeta_p 的极小多项式是%5Cfrac%7Bx%5Ep-1%7D%7Bx-1%7D%3D1%2Bx%2B%5Ccdots%2Bx%5E%7Bp-1%7D,其所有根是%0A%5Czeta_p%2C%5Czeta_p%5E2%2C%5Ccdots%2C%5Czeta_p%5E%7Bp-1%7D%5Cmathbb%7BQ%7D(%0A%5Czeta_p)%5Cmathbb%7BQ%7Dp-1次扩张.因而%5Cmathbb%7BQ%7D(%0A%5Czeta_p)的所有%5Cmathbb%7BQ%7D嵌入构成Galois群%5Coperatorname%7BGal%7D%5Cmathbb%7BQ(%5Czeta_p)%2F%5Cmathbb%7BQ%7D%7D,且这个群是循环的:%5Coperatorname%7BGal%7D%5Cmathbb%7BQ%7D(%5Czeta_p)%2F%20%5Cmathbb%7BQ%7D%5Ccong(%5Cmathbb%7BZ%7D%2Fp%5Cmathbb%7BZ%7D)%5E%7B%5Ctimes%7D%5Ccong%20%5Cmathbb%7BZ%7D%2F(p-1)%5Cmathbb%7BZ%7D.所有p-1%5Cmathbb%7BQ%7D嵌入均是虚的,两两成对.

下面以计算d_%7B%5Cmathbb%7BQ%7D(%5Czeta_p)%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p)作为结束:利用d_%7BL%2FK%7D(%5Calpha)%3D(-1)%5E%7B%5Cfrac%7Bn(n-1)%7D%7B2%7D%7DN_%7BL%2FK%7D(m_%7BK%2C%5Calpha%7D'(%5Calpha)).下面记K%3D%5Cmathbb%7BQ%7D(%5Czeta_p).%0A%5Czeta_p的极小多项式记为f(x)%3D%5Cfrac%7Bx%5Ep-1%7D%7Bx-1%7D.对(x-1)f(x)%3Dx%5Ep-1两边求导得到(x-1)f'(x)%2Bf(x)%3Dpx%5E%7Bp-1%7D.代入%0A%5Czeta_p 得(%5Czeta_p-1)f'(%5Czeta_p)%3Dp%5Czeta_p%5E%7Bp-1%7D(%5Czeta_p-1)f'(%5Czeta_p)%3Dp%5Czeta_p%5E%7Bp-1%7D(%5Czeta_p-1)f'(%5Czeta_p)%3Dp%5Czeta_p%5E%7Bp-1%7D(%5Czeta_p-1)f'(%5Czeta_p)%3Dp%5Czeta_p%5E%7Bp-1%7Df'(%5Czeta_p)%3D%5Cfrac%7Bp%5Czeta_p%5E%7B-1%7D%7D%7B%5Czeta_p-1%7D.因此我们要计算d_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p)%3D(-1)%5E%7B%5Cfrac%7B(p-1)(p-2)%7D%7B2%7D%7DN_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Cfrac%7Bp%5Czeta_p%5E%7B-1%7D%7D%7B%5Czeta_p-1%7D).由于N_%7BK%2F%5Cmathbb%7BQ%7D%7D是个同态,我们只要分别计算N_%7BK%2F%5Cmathbb%7BQ%7D%7D(p),N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p),N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p-1).

N_%7BK%2F%5Cmathbb%7BQ%7D%7D(p)%3Dp%5E%7Bp-1%7D.N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p)%3D%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D%5Czeta_p%5Ek%3D%5Czeta_p%5E%7B%5Cfrac%7Bp(p-1)%7D%7B2%7D%7D%3D1,N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p-1)%3D%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D(%5Czeta_p%5Ek-1)%3D(-1)%5E%7Bp-1%7D%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D(1-%5Czeta_p%5Ek).注意一个常见的技巧:f(x)%3D%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D(x-%5Czeta_p%5Ek),代入x%3D1.得到%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D(1-%5Czeta_p%5Ek)%3Df(1)%3Dp.因此N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p-1)%3D(-1)%5E%7Bp-1%7Dp.最终得到d_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p)%3D(-1)%5E%7B%5Cfrac%7B(p-1)(p-2)%7D%7B2%7D%7DN_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Cfrac%7Bp%5Czeta_p%5E%7B-1%7D%7D%7B%5Czeta_p-1%7D)%3D(-1)%5E%7B%5Cfrac%7Bp-1%7D%7B2%7D%7Dp%5E%7Bp-2%7D%5C%20%5C%20%5C%20%5C%20%5Csquare


代数数论笔记(二):二次域和圆域上迹、范和判别式的计算的评论 (共 条)

分享到微博请遵守国家法律