欢迎光临散文网 会员登陆 & 注册

形心、三重积分—柱坐标系

2023-07-03 09:53 作者:编程会一点建模不太懂  | 我要投稿

题目选自2010年考研数学一

%5CvarOmega%20%3D%5Cleft%5C%7B%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20%7Cx%5E2%2By%5E2%5Cle%20z%5Cle%201%20%5Cright%5C%7D%20

求几何体形心的竖坐标%20%5Cbar%7Bz%7D

几何体是抛物面与平面包围部分

三维几何体形心竖坐标的定义是

%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%7D%7B%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bdxdydz%7D%7D%0A

其中

%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cint_%7Bx%5E2%2By%5E2%7D%5E1%7Bzdz%7Ddxdy%7D%0A

%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cfrac%7B1%7D%7B2%7Dz%5E2%5Cmid_%7Bx%5E2%2By%5E2%7D%5E%7B1%7Ddxdy%7D%0A

%3D%5Cfrac%7B1%7D%7B2%7D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cleft%5B%201-%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20%5E2%20%5Cright%5D%20dxdy%7D%0A

%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7Bdxdy%7D-%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20%5E2dxdy%7D%20%5Cright%5D%20%0A

%3D%5Cfrac%7B1%7D%7B2%7D%5Cpi%20-%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B2%5Cpi%7D%7Bd%5Ctheta%7D%5Cint_0%5E1%7Br%5E4rdr%7D%0A

%3D%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cfrac%7B%5Cpi%7D%7B6%7D%3D%5Cfrac%7B%5Cpi%7D%7B3%7D%0A

%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bdxdydz%7D%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cint_%7Bx%5E2%2By%5E2%7D%5E1%7Bdz%7Ddxdy%7D%0A

%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cleft%5B%201-%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20%5Cright%5D%20dxdy%7D%0A

%3D%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7Bdxdy%7D-%5Ciint%5Climits_%7Bx%5E2%2By%5E2%5Cle%201%7D%7B%5Cleft(%20x%5E2%2By%5E2%20%5Cright)%20dxdy%7D%0A

%3D%5Cpi%20-%5Cint_0%5E%7B2%5Cpi%7D%7Bd%5Ctheta%7D%5Cint_0%5E1%7Br%5E2rdr%7D%0A

%3D%5Cpi%20-%5Cfrac%7B%5Cpi%7D%7B2%7D%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%0A

%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%7D%7B%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bdxdydz%7D%7D%3D%5Cfrac%7B2%7D%7B3%7D%0A

题目分析:本题主要考察了形心、质心等物理概念的定义和三重积分计算。

形心、质心的定义

曲线的形心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Cint%7Bxdl%7D%7D%7B%5Cint%7Bdl%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Cint%7Bydl%7D%7D%7B%5Cint%7Bdl%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Cint%7Bzdl%7D%7D%7B%5Cint%7Bdl%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

曲线的质心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20xdl%7D%7D%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dl%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20ydl%7D%7D%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dl%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20zdl%7D%7D%7B%5Cint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dl%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

曲面的形心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciint%7BxdS%7D%7D%7B%5Ciint%7BdS%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciint%7BydS%7D%7D%7B%5Ciint%7BdS%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciint%7BzdS%7D%7D%7B%5Ciint%7BdS%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

曲面的质心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20xdS%7D%7D%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dS%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20ydS%7D%7D%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dS%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20zdS%7D%7D%7B%5Ciint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dS%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

几何体的形心%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciiint%7BxdV%7D%7D%7B%5Ciiint%7BdV%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciiint%7BydV%7D%7D%7B%5Ciiint%7BdV%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciiint%7BzdV%7D%7D%7B%5Ciiint%7BdV%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

几何体的质心

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbar%7Bx%7D%3D%5Cfrac%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20xdV%7D%7D%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dV%7D%7D%5C%5C%0A%09%5Cbar%7By%7D%3D%5Cfrac%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20ydV%7D%7D%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dV%7D%7D%5C%5C%0A%09%5Cbar%7Bz%7D%3D%5Cfrac%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20zdV%7D%7D%7B%5Ciiint%7B%5Crho%20%5Cleft(%20x%2Cy%2Cz%20%5Cright)%20dV%7D%7D%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

其中%5Crho%20(x%2Cy%2Cz)是几何图形的密度函数

本题中三重积分的计算采用了“先一后二”的柱坐标系计算方法,也可以采用“先二后一”的方法,即先对xy积分算出几何体关于变量z截面面积函数A(z),在对变量z积分

%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%3D%5Cint_0%5E1%7Bzdz%7D%5Ciint%5Climits_%7BD%5Cleft(%20z%20%5Cright)%7D%7Bdxdy%7D%0A

其中D(z)是抛物面z%3Dx%5E2%2By%5E2的每一个水平截面区域

抛物面的每一个水平截面都是半径为%5Csqrt%7Bz%7D的圆

所以%5Ciint%5Climits_%7BD%5Cleft(%20z%20%5Cright)%7D%7Bdxdy%7D%3D%5Cpi%20z%0A

%5Ciiint%5Climits_%7B%5CvarOmega%7D%7Bzdxdydz%7D%3D%5Cint_0%5E1%7Bzdz%7D%5Ciint%5Climits_%7BD%5Cleft(%20z%20%5Cright)%7D%7Bdxdy%7D%0A

%3D%5Cint_0%5E1%7Bz%5Cpi%20zdz%7D%3D%5Cpi%20%5Cint_0%5E1%7Bz%5E2dz%7D%3D%5Cfrac%7B%5Cpi%7D%7B3%7D%0A


形心、三重积分—柱坐标系的评论 (共 条)

分享到微博请遵守国家法律