欢迎光临散文网 会员登陆 & 注册

阿里工程师分享:浅谈分布式发布订阅消息系统Kafka 快来看看!

2020-08-04 15:46 作者:自学Python的小姐姐呀  | 我要投稿

Kafka的基本介绍 Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。 主要应用场景是:日志收集系统和消息系统。 Kafka主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输。 支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输。 同时支持离线数据处理和实时数据处理。 Kafka的设计原理分析

一个典型的kafka集群中包含若干producer,若干broker,若干consumer,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在consumer group发生变化时进行rebalance。producer使用push模式将消息发布到broker,consumer使用pull模式从broker订阅并消费消息。   Kafka专用术语: Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。 Topic:一类消息,Kafka集群能够同时负责多个topic的分发。 Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。 Segment:partition物理上由多个segment组成。 offset:每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息。 Producer:负责发布消息到Kafka broker。 Consumer:消息消费者,向Kafka broker读取消息的客户端。 Consumer Group:每个Consumer属于一个特定的Consumer Group。 Kafka数据传输的事务特点 at most once:最多一次,这个和JMS中"非持久化"消息类似,发送一次,无论成败,将不会重发。消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理。那么此后"未处理"的消息将不能被fetch到,这就是"at most once"。 at least once:消息至少发送一次,如果消息未能接受成功,可能会重发,直到接收成功。消费者fetch消息,然后处理消息,然后保存offset。如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态。 exactly once:消息只会发送一次。kafka中并没有严格的去实现(基于2阶段提交),我们认为这种策略在kafka中是没有必要的。 通常情况下"at-least-once"是我们首选。 Kafka消息存储格式 Topic & Partition 一个topic可以认为一个一类消息,每个topic将被分成多个partition,每个partition在存储层面是append log文件。

在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。

每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。 每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。 这样做的好处就是能快速删除无用文件,有效提高磁盘利用率。 segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件。 segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。 

segment中index与data file对应关系物理结构如下:

上图中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。 其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message),以及该消息的物理偏移地址为497。 了解到segment data file由许多message组成,下面详细说明message物理结构如下:

 

参数说明:

副本(replication)策略 Kafka的高可靠性的保障来源于其健壮的副本(replication)策略。 1) 数据同步 kafka在0.8版本前没有提供Partition的Replication机制,一旦Broker宕机,其上的所有Partition就都无法提供服务,而Partition又没有备份数据,数据的可用性就大大降低了。所以0.8后提供了Replication机制来保证Broker的failover。 引入Replication之后,同一个Partition可能会有多个Replica,而这时需要在这些Replication之间选出一个Leader,Producer和Consumer只与这个Leader交互,其它Replica作为Follower从Leader中复制数据。 

2) 副本放置策略 为了更好的做负载均衡,Kafka尽量将所有的Partition均匀分配到整个集群上。Kafka分配Replica的算法如下: 将所有存活的N个Brokers和待分配的Partition排序 将第i个Partition分配到第(i mod n)个Broker上,这个Partition的第一个Replica存在于这个分配的Broker上,并且会作为partition的优先副本 将第i个Partition的第j个Replica分配到第((i + j) mod n)个Broker上 假设集群一共有4个brokers,一个topic有4个partition,每个Partition有3个副本。下图是每个Broker上的副本分配情况。 

3) 同步策略 Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少,Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader pull数据。这种方式上,Follower存储的数据顺序与Leader保持一致。Follower在收到该消息并写入其Log后,向Leader发送ACK。一旦Leader收到了ISR中的所有Replica的ACK,该消息就被认为已经commit了,Leader将增加HW并且向Producer发送ACK。 为了提高性能,每个Follower在接收到数据后就立马向Leader发送ACK,而非等到数据写入Log中。因此,对于已经commit的消息,Kafka只能保证它被存于多个Replica的内存中,而不能保证它们被持久化到磁盘中,也就不能完全保证异常发生后该条消息一定能被Consumer消费。 Consumer读消息也是从Leader读取,只有被commit过的消息才会暴露给Consumer。


阿里工程师分享:浅谈分布式发布订阅消息系统Kafka 快来看看!的评论 (共 条)

分享到微博请遵守国家法律