欢迎光临散文网 会员登陆 & 注册

关于极点极线的一对基础命题

2022-10-19 16:46 作者:数学老顽童  | 我要投稿
  • 已知椭圆%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0)及其所在平面内一点P%5Cleft(%20x_0%2Cy_0%20%5Cright)%20(不在椭圆上,也不在椭圆中心),过P的直线l_1与椭圆交于AB两点,与直线l_2%5Cfrac%7Bx_0x%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y%7D%7Bb%5E2%7D%3D1交于点Q,证明:%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D.

l_1的参数方程为%5Cbegin%7Bcases%7D%09x%3Dx_0%2Bt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dy_0%2Bt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t为参数),

与椭圆联立得

%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%2B%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%3D0

各项同除以t%5E2,得

%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright)%20%5Cleft(%20%5Cfrac%7B1%7D%7Bt%7D%20%5Cright)%20%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20%5Cfrac%7B1%7D%7Bt%7D%2B%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%3D0

依韦达定理可得

%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%5Cright)%7D.

联立l_1l_2,解得

%5Cfrac%7B1%7D%7Bt_0%7D%3D%5Cfrac%7B%5Cfrac%7Bx_0%5Ccos%20%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%20%5Calpha%7D%7Bb%5E2%7D%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D.

所以

%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%7D%7Bt_0%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D

  • 已知椭圆%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0)及其所在平面内一点P%5Cleft(%20x_0%2Cy_0%20%5Cright)%20(不在椭圆上,也不在椭圆中心),过P的直线l与椭圆交于AB两点,点Q满足:%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D,求Q的轨迹方程.

l的参数方程为%5Cbegin%7Bcases%7D%09x%3Dx_0%2Bt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dy_0%2Bt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t为参数),

与椭圆联立得

%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%2B%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%3D0

各项同除以t%5E2,得

%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright)%20%5Cleft(%20%5Cfrac%7B1%7D%7Bt%7D%20%5Cright)%20%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20%5Cfrac%7B1%7D%7Bt%7D%2B%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%3D0

依韦达定理可得

%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D.

所以

%5Cbegin%7Baligned%7D%0A%09%5Cfrac%7B2%7D%7Bt_Q%7D%26%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

t_Q%3D%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D.

所以

%5Cbegin%7Bcases%7D%09x_Q%3Dx_0%2B%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D%5Ccdot%20%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y_Q%3Dy_0%2B%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D%5Ccdot%20%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

消去%5Calpha可得:%5Cfrac%7Bx_0x_Q%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y_Q%7D%7Bb%5E2%7D%3D1.

所以点Q的轨迹方程为直线:

%5Cfrac%7Bx_0x%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y%7D%7Bb%5E2%7D%3D1.

关于极点极线的一对基础命题的评论 (共 条)

分享到微博请遵守国家法律