欢迎光临散文网 会员登陆 & 注册

斯坦福博弈论笔记整理活动的任务已重新划分,望周知

2019-09-26 20:53 作者:绝不原创的飞龙  | 我要投稿

参与方式:https://github.com/apachecn/stanford-game-theory-notes-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/stanford-game-theory-notes-zh/issues/1

项目仓库:https://github.com/apachecn/stanford-game-theory-notes-zh

贡献指南

请您勇敢地去翻译和改进翻译。虽然我们追求卓越,但我们并不要求您做到十全十美,因此请不要担心因为翻译上犯错——在大部分情况下,我们的服务器已经记录所有的翻译,因此您不必担心会因为您的失误遭到无法挽回的破坏。(改编自维基百科)

课程视频:

  • 斯坦福博弈论课程官网(http://www.game-theory-class.org/)

  • Cousera 博弈论 1(https://www.coursera.org/learn/game-theory-1)

  • Cousera 博弈论 2(https://www.coursera.org/learn/game-theory-2)

负责人:

  • viviwong(https://github.com/viviwong)

章节列表

  • 博弈论 I

  • 1-1 Game Theory Intro - TCP Backoff

  • 1-2 Self-Interested Agents and Utility Theory

  • 1-3 Defining Games

  • 1-4 Examples of Games

  • 1-5 Nash Equilibrium Intro

  • 1-6 Strategic Reasoning

  • 1-7 Best Response and Nash Equilibrium

  • 1-8 Nash Equilibrium of Example Games

  • 1-9 Dominant Strategies

  • 1-10 Pareto Optimality

  • 2-1 Mixed Strategies and Nash Equilibrium (I)

  • 2-2 Mixed Strategies and Nash Equilibrium (II)

  • 2-3 Computing Mixed Nash Equilibrium

  • 2-4 Hardness Beyond 2x2 Games - Basic

  • 2-4 Hardness Beyond 2x2 Games - Advanced

  • 2-5 Example: Mixed Strategy Nash

  • 2-6 Data: Professional Sports and Mixed Strategies

  • 3-1 Beyond the Nash Equilibrium

  • 3-2 Strictly Dominated Strategies & Iterative Removal

  • 3-3 Dominated Strategies & Iterative Removal: An Application

  • 3-4 Maxmin Strategies

  • 3-4 Maxmin Strategies - Advanced

  • 3-5 Correlated Equilibrium: Intuition

  • 4-1 Perfect Information Extensive Form: Taste

  • 4-2 Formalizing Perfect Information Extensive Form Games

  • 4-3 Perfect Information Extensive Form: Strategies, BR, NE

  • 4-4 Subgame Perfection

  • 4-5 Backward Induction

  • 4-6 Subgame Perfect Application: Ultimatum Bargaining

  • 4-7 Imperfect Information Extensive Form: Poker

  • 4-8 Imperfect Information Extensive Form: Definition, Strategies

  • 4-9 Mixed and Behavioral Strategies

  • 4-10 Incomplete Information in the Extensive Form: Beyond Subgame Perfection

  • 博弈论 II

  • 1.1 Social Choice: Taste

  • 1.2 Social Choice: Voting Scheme

  • 1.3 Paradoxical Outcomes

  • 1.4 Impossibility of Non-Paradoxical Social Welfare Functions

  • 1.5 Arrow’s Theorem

  • 1.6 Impossibility of Non-Pardoxical Social Choice Functions

  • 1.7 Single-Peaked Preferences

  • 2.1 Mechanism Design: Taste

  • 2.2 Implementation

  • 2.3 Mechanism Design: Examples

  • 2.4 Revelation Principle

  • 2.5 Revelation Principle: Examples

  • 2.6 Impossibility of General Dominant-Strategy Implementation

  • 2.7 Transferable Utility

  • 2.8 Transferable Utility Example

  • 2.9 Mechanism Design as an Optimization Problem

  • 3.1 VCG: Taste

  • 3.2 VCG: Definitions

  • 3.3 VCG: Examples

  • 3.4 VCG: Limitations

  • 3.5 VCG: Individual Rationality and Budget Balance in VCG

  • 3.6 VCG: The Myerson-Satterthwaite Theorem

  • 4.1 Auctions: Taste

  • 4.2 Auctions: Taxonomy

  • 4.3 Bidding in Second-Price Auctions

  • 4.4 Bidding in First-Price Auctions

  • 4.5 Revenue Equivalence

  • 4.6 Optimal Auctions

  • 4.7 More Advanced Auctions

流程

一、认领

首先查看整体进度(https://github.com/apachecn/stanford-game-theory-notes-zh/issues/1),确认没有人认领了你想认领的章节。

然后回复 ISSUE,注明“章节 + QQ 号”。

二、整理笔记

  • 翻译 Coursera 课程页面的字幕(可以利用谷歌翻译(https://translate.google.cn),但一定要把它变得可读)

  • 排版成段落,并添加视频截图

三、提交

  • fork Github 项目

  • 将文档(Markdown 格式)放在docs中。

  • push

  • pull request

请见 Github 入门指南(https://github.com/apachecn/kaggle/blob/master/docs/GitHub)。


斯坦福博弈论笔记整理活动的任务已重新划分,望周知的评论 (共 条)

分享到微博请遵守国家法律