欢迎光临散文网 会员登陆 & 注册

医学名词解释

2023-10-12 21:55 作者:生物yes  | 我要投稿

1.肽单元(peptide unit)或肽基(peptide group): 参与肽键的6个原子Ca1、C、O、N、H、Ca2位于同一平面,Ca1和Ca2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Ca是两个肽平面的连接点,两个肽平面可经Ca的单键进行旋转,N—Ca、Ca—C是单键,可自由旋转。

2.结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。

3.模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。

天然蛋白质(Native Proteins)  蛋白质中原子的空间排列是蛋白质的构象,一个蛋白质的可能构象包括在不打破共价键的前提下的任意的结构状态。如单键旋转可以导致构象的改变。一个蛋白质分子中有数百个单键,理论上存在无数的构象,生理条件下,会呈现一个或几个主要的构象状态。在特定条件下存在的构象通常是热力学上最稳定的构象,具有最低的自由能。处于功能及折叠状态构象的蛋白质被称为天然蛋白质(native proteins)。

完全蛋白质(complete protein)是以含有人体所需9种必需胺基酸的均衡性来判定,均衡性愈高的蛋白质,其生物价值愈高,我们就称之为完全蛋白质。

蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。

拉马钱德兰图Ramachandran plot 对于一个三肽来说,当中心肽基处在所有φ角和ψ角值时计算非键合原子间的允许距离,把得到的信息绘制成的图叫构象图或Ramachandran图简称拉氏图。

α-螺旋(α-helix )是蛋白质中最常见、含量最丰富的二级结构。多肽的主链可以按右手方向或左手方向盘绕形成右手螺旋或左手螺旋。每周螺旋占3.6个氨基酸残基、沿螺旋轴方向上升0.54 nm、每个氨基酸残基绕轴旋转1000,沿轴上升0.15 nm。螺旋中氨基酸残基的侧链伸向外侧,相邻螺圈之间形成链内氢键,氢键的取向与中心轴几乎呈平行关系。氢键由肽键上的N-H的氢与其后面(N端)的第四个氨基酸残基上的C=O的氧之间形成。

β-构象β-conformationβ-构象也称β-折叠、β-结构、β-折叠片,是蛋白质中第二种最常见的二级结构。两条或多条几乎完全伸展的多肽链侧向聚集在一起,相邻肽链主链上的-NH和C=O之间形成有规则的氢键,这种构象为β-构象。在β-构象中,所有的肽键都参与链间氢键的交联,氢键与肽链的长轴接近垂直,在肽链的长轴方向上具有重复单位。除作为某些纤维蛋白质的基本构象外,β-构象还普遍存在于球状蛋白质中。β-构象分为两种类型:平行式(parallel)和反平行式(antiparallel)。

β-转角(β-turn)也称回折(reverse turn)、β-弯曲(β-bend)或发夹结构(hairpin structure),是球状蛋白质中发现的另一种二级结构。有三种类型(两种主要),每个类型都有4个氨基酸残基,弯曲处的第一个氨基酸残基的C=O和第四个氨基酸残基的NH之间形成一个41氢键,产生一个不很稳定的环形结构,连接α-螺旋或β-构象。Gly及Pro残基常出现在β-转角处,前者因为小和可变,后者因为肽键中Pro的亚氨氮通常是顺式构型。β-转角常出现在球状蛋白质的表面附近,这里,肽基中间的两个氨基酸残基能与水形成氢键。β转角相当于半圈3.010 螺旋。

β-凸起(β-bugle)是一种小片的非重复结构,能单独存在,但大多数经常作为反平行β-折叠片中的一种不规则情况而存在。β-凸起可认为是β-折叠股中额外插入的一个残基,它使得在两个正常氢键之间的凸起折叠股上是两个残基,而另一侧的正常股上是一个残基。

无规则卷曲(Random coil ) 无规则卷曲或称卷曲(coil),泛指那些不能被归入明确的二级结构如折叠片或螺旋的多肽区段。这些区段大多数既不是卷曲,也不是完全无规则的,存在少数柔性的无序片段。它们也像其他二级结构那样是明确而稳定的结构,否则蛋白质就不可能形成三维空间上每维都具周期性结构的晶体。它们受侧链相互作用的影响很大,经常构成酶活性部位和其他蛋白质特异的功能部位,如许多钙结合蛋白中结合钙离子的EF手结构(E-F hand structure)的中央环。 

角蛋白(α-Keratin) 由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。α-角蛋白中,两股(或三股)右手α-螺旋向左缠绕,拧成一根原纤维(protofibril)(直径2 nm),再排列成“9+2”的电缆式结构—微纤维(microfibril)(直径为8 nm),数百根微纤维结合成不规则纤维束—大纤维(macrofibril),直径200 nm。角蛋白含有丰富的二硫键,每四个螺旋就有一个交联二硫键,保证了纤维结构的稳定和强大刚性。α-角蛋白在湿热条件下可转变为β-构象,冷却干燥又回复原状。也有天然存在的α-角蛋白,如丝心蛋白(fibroin),是典型的反平行折叠片。

胶原蛋白(Collagen)是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。稳定胶原三螺旋的力:一是螺旋间的范德华力,二是螺旋间的氢键,三是链间的共价交联。

超二级结构(Supersecondary structure)超二级结构是介于蛋白质二级结构和三级结构之间的空间结构,指相邻的二级结构单元组合在一起,彼此相互作用,排列形成规则的、在空间结构上能够辨认的二级结构组合体,并充当三级结构的构件(block building),其基本形式有αα、βαβ和βββ等。多数情况下只有非极性残基侧链参与这些相互作用,而亲水侧链多在分子的外表面。

αα超二级结构   αα是一种由两股右手α-螺旋彼此缠绕而成的左手超螺旋(superhelix),重复距离约140 Å。是α-角蛋白、肌球蛋白、原肌球蛋白(protomyosin)和纤维蛋白原(fibrinogen)中的一种超二级结构。由于形成超螺旋,每圈螺旋为3.5个氨基酸残基(不是3.6),沿轴有一定的倾斜,重复距离从5.4缩短到5.1Å。螺旋之间的相互作用由侧链的装配控制,螺旋之间可能作用的侧链是非极性的,它们向着超螺旋内部,避开与水接触,其他的是极性的,处于分子的表面,与水接触。超螺旋的稳定性主要由非极性侧链间的范德华力相互作用的结果。

βαβ超二级结构   最简单的βαβ组合是由二段平行的β-链和一段连接链组成,此超二级结构为β×β单位。连接链或是α-螺旋链或是无规则卷曲。最常见的βαβ组合是由三段平行的β-链和二段α-螺旋链构成-Rossmann-折叠。

βββ   β-曲折和回形拓扑结构是(βββ)组合的两种超二级结构。β-曲折(mander)是另一种常见的超二级结构,相邻的三条反平行β-链通过紧凑的β-转角连接而成。

蛋白质的三级结构 (Tertiary structure)蛋白质的多肽链在各种二级结构的基础上再进一步盘曲或折叠形成具有一定规律的三维空间结构,称为蛋白质的三级结构。蛋白质每个原子的空间位置,其主要研究方法是,X-光衍射和核磁共振法。现也有认为蛋白质的三级结构是指蛋白质分子主链折叠盘曲形成构象的基础上,分子中的各个侧链所形成一定的构象。侧链构象主要是形成微区(或称结构域domain)。对球状蛋白质来说,形成疏水区和亲水区。亲水区多在蛋白质分子表面,由很多亲水侧链组成。

氢键(Hydrogen Bond)   在稳定蛋白质的结构中起着极其重要的作用。多肽主链上的羰基氧和酰胺氢之间形成的氢键是稳定蛋白质二级结构的主要作用力。此外,还可在侧链与侧链,侧链与介质水,主链肽基与侧链或主链肽基与水之间形成。

范德华力(Van Der Waals Forces) 中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两个原子之间的距离为它们的范德华半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。

疏水作用(Hydrophobic Interaction) 非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。这一现象称为疏水作用,它在稳定蛋白质的三维结构方面占有突出地位。

蛋白质溶液系统的熵增加是疏水作用的主要动力。当疏水化合物或基团进入水中时,它周围的水分子将排列成刚性的有序结构即所谓笼形结构(clathrate structure)。与此相反的过程(疏水作用),排列有序的水分子(笼形结构)将被破坏,这部分水分子被排入自由水中,这样水的混乱度增加即熵增加,因此疏水作用是熵驱动的自发过程。

盐 键(Ion  Interaction)又称盐桥或离子键,它是正电荷与负电荷之间的一种静电相互作用。吸引力与电荷电量的乘积成正比,与电荷质点间的距离平方成反比,在溶液中此吸引力随周围介质的介电常数增大而降低。

二硫键 (Disulfide Bond) 绝大多数情况下二硫键是在多肽链的β-转角附近形成的,通过两个半胱氨酸巯基的氧化形成共价键,二硫键在稳定某些蛋白在三维结构上起重要作用。 

蛋白质的四级结构(Quaternary structure)  蛋白质与蛋白质的相互作用,蛋白质与核酸的相互作用,比较简单的体系有血红蛋白、限制性内切酶等,复杂体系有核糖体、病毒、肌肉蛋白等。指蛋白质分子中亚基的立体排布,亚基间的相互作用与接触部位的布局。

亚基(subunit)就是指参与构成蛋白质四级结构的、每条具有三级结构的多肽链。单条多肽链组成的蛋白质分子没有四级结构;一般是一条多肽链形成一个亚基。亚基可相同或不同。亚基单独存在无活性;维系蛋白质四级结构的是氢键、盐键、范氏引力、疏水键等非共价键。

血红蛋白(hemoglobin)寡聚蛋白质,四个亚基,两个α(141 AAs)两个β(146AAs),四个亚基占据四面体的四个角。血红素辅基位于分子表面的空穴里,每个亚基一个辅基。四个氧的结合部位保持一定距离。每个α链与每个β链接触,同亚基间很少有作用。

肌球蛋白(Myosin)是一种马达蛋白(motor protein),在肌肉收缩和细胞分裂中起重要作用,由Kuehne于1864年在研究骨骼肌收缩时发现并命名 。有6个亚基:2条重链,4条轻链,状如“Y”字,长约160 nm。在肌球蛋白超家族中,头部区域都有相当高的同源性,特别是ATP和肌动蛋白的结合位点非常保守,头部具ATP酶活性。两条重链的氨基末端分别与两对轻链结合,形成两个球状的头部和颈部调节结构域,称为S1(subfragment 1),余下重链部分组成肌球蛋白长杆状的尾部。

变构效应  当血红蛋白的一个α亚基与氧分子结合以后,可引起其他亚基的构象发生改变,对氧的亲和力增加,从而导致整个分子的氧结合力迅速增高,使血红蛋白的氧饱和曲线呈“S”形。这种由于蛋白质分子构象改变而导致蛋白质分子功能发生改变的现象称为变构效应。

波耳效应1914年,C. Bohr发现,高浓度的H+和CO2促使氧合血红蛋白分子释放O2,而高浓度的O2促使脱氧血红蛋白分子释放H+和CO2——血红蛋白对O2、 H+和CO2结合的这种相互关系叫波耳效应。

分子伴侣(molecular chaperone)与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。



镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β-亚基N端的第六个氨基酸残缺是缬氨酸(val),而不是下正常的谷氨酸残基(Glu)。 

α螺旋-转角- α螺旋模式(HTH) 蛋白质形成对称的同型二聚体,每个单位由20个氨基酸的小肽组成,两个α螺旋相互连接成β转角。羧基端的α螺旋负责识别DNA大沟的特异碱基信息,另一个螺旋与磷酸戊糖链骨架接触。

锌指模式 (Zinc Finger) 每个锌指单位是一个DNA结合结构域,由30个左右氨基酸残基组成,其中一对Cys和一对His与Zn2+形成配位键,锌指的C端形成α螺旋负责与DNA结合。锌指结构:基因调控的转录因子存在于致癌基因、果蝇控制发育的基因、受生长因子和分化信号诱导合成的蛋白质序列中。

亮氨酸拉链式模式 (Leucine Zipper)蛋白质肽链的羧基端约35个氨基酸残基有形成a螺旋的特点,每两圈(7个氨基酸残基)有一个Leu残基。 α螺旋一侧的Leu排成一列,两个α螺旋间靠Leu间的疏水作用力形成一条拉链状结构。这些亮氨酸残基都在螺旋的同一个方向出现。两个相同结构的两排亮氨酸残基就能以疏水键结合成二聚体,该二聚体的另一端的肽段富含碱性氨基酸残基,借其正电荷与DNA双螺旋链上带负电荷的磷酸基团结合。若不形成二聚体则对DNA的亲和结合力明显降低。这类蛋白质能够与CAAT框和病毒增强子结合。 

足迹法(DNA Foot Printing)研究DNA结合蛋白的结合位点,足迹法技术用于测定与特殊蛋白质结合在DNA上的结合位点和相应的核苷酸顺序。如该技术提供了RNA聚合酶与启动子之间相互作用的信息并确定了作用位点(启动子)的核苷酸顺序。

蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。

复性(renaturation)有些蛋白质的变性是可逆的,通过适当的方法(如透析)将变性剂除去后,蛋白质可以恢复其天然立体结构,这个过程称为复性(renaturation)。

5.蛋白质的等电点(isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。

两性电解质 (ampholyte) 同一个氨基酸分子上可以同时解离携带正电荷和负电荷,被称为两性电解质。

Sanger reaction 


Edman degeradation 从多肽链的游离N端测定氨基酸残基序列的过程,N端氨基酸残基被苯异硫氰酸(PITC)修饰,然后从多肽链上切下被修饰的残基,再经层析鉴定,余下的多肽链(少一个氨基酸残基)被回收再进行下一轮降解循环。

色谱法(Chromatography):使混合物中各组分在两相间进行分配,其中一相是不动的(固定相),另一相(流动相)携带混合物流过此固定相,与固定相发生作用,在同一推动力下,不同组分在固定相中滞留的时间不同,依次从固定相中流出,又称色层法,层析法。

分配系数(partition or distribution coefficient)(kd)当一种溶质在两种一定的互不相溶的溶剂中分配时,在一定的温度下达到平衡后,溶质在两相中的浓度比值为一常数。 

滤纸层析(Filter-paper chromatography)分配层析的一种,滤纸纤维素上吸附的水是固定相,展层(development)用的溶剂是流动相,层析使混合氨基酸在两相中不断被分配,使它们分配在滤纸的不同位置。滤纸层析是分离及鉴定简单氨基酸混合物的常用技术,可用于蛋白质氨基酸组成的定性鉴定及定量测定。

凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析(size-exclusion chromatography)。利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。由于较大分子的蛋白质不能进入柱料,流经柱层析的路径短,因此较大分子量的蛋白质移动速度快而先被洗脱下来;较小分子量的蛋白质进入柱层析路径长而移动速度慢后被洗脱下来。

亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。

SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。

等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。

双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。

离子交换柱层析(Ion-exchange column chromatography) 此法是利用离子交换树脂作为柱层析支持物,将带有不同电荷及电量的AA进行分离的方法。离子交换树脂可以分为阳离子交换树脂(如羧甲基纤维素等)和阴离子交换树脂(如二乙基氨基乙基纤维素等)。

阳离子交换层析中,带正电荷多的AA与树脂结合较强,而带正电荷少的AA与树脂结合则较弱。用不同浓度的阳离子洗脱液,如NaCl溶液进行梯度洗脱,通过Na+的离子交换作用,可以将带有不同正电荷的AA进行分离。也可以用不同pH值的缓冲液洗脱。带电荷量少、亲和力小的先被洗脱下来,带电荷量多、亲和力大的后被洗脱下来。

气相色谱(Gas liquid chromatography,GLC)当层析系统的流动相为气体,固定相为涂渍在固体表面的液体时,这类层析技术被称为气-液色谱或气相色谱。原理也是分配过程,利用样品组分在流动的气相和固定在颗粒表面的液相的分配系数不同以达到分离组分的目的。涂有薄层液体的惰性颗粒被装在一根长的不锈钢管或玻璃管中(色谱柱,column),在适当温度下,令高压气体连续通过色谱柱,待分离样品在进样室被气化后流经固定相,气化的样品在流动的气相和固定相的液相之间发生分配,将组分分离开来。

高效液相色谱(High performance liquid chromatography, HPLC)曾称高压液相色谱,以液相色谱为基础,在经典液相色谱实验和技术基础上建立的一种液相色谱法。快速、灵敏、高效的分离和分析技术。

对角线电泳技术  Diagonal Electrophoresis  a) 混合肽段点到滤纸中央。b) 第一向电泳,将产物分开。c) 用过甲酸将二硫键打断d) 进行第二向电泳e) 偏离对角线的样品就是含二硫键的片段。

蛋白质芯片技术(Protein Chips,Protein Array)基本原理:将高度密集排列的蛋白质分子作为探针点阵固定在固相支持物上,当与待测蛋白样品反应时,可捕获样品中的靶蛋白,再经检测系统对靶蛋白进行定性和定量分析。依据的杂交反应原理:抗原-抗体反应、配体-受体反应、蛋白质-蛋白质相互作用。

酵母双杂交(Yeast Two Hybrid) 技术 酵母双杂交系统利用酵母遗传学方法分析蛋白质之间的相互作用,该方法建立以来,经过不断的完善和发展,不但可以检测已知蛋白质之间的相互作用,更重要的在于发现新的与已知蛋白相互作用的未知蛋白质。


乳糜泻,Celiac disease) 

消化酶不能分解小麦面粉中的水不溶性蛋白(麦角蛋白,醇溶朊或麸朊,gliadin),先天免疫性障碍造成对小肠黏膜的炎症和萎缩,对肠衬细胞产生不利作用,引起体腔(腹腔)疾病。 

急性胰腺炎(Acute Pancteatitis)胰液分泌到肠内的分泌途径障碍,蛋白水解酶酶原预先成熟转变为催化的活性形式,这些活性水解酶在胰腺细胞内攻击自身组织,损伤器官。严重时可致命,死亡率为20%,有并发症者可达50%。

蛋白质的腐败 肠道细菌对未被消化的蛋白质及蛋白质的消化产物起的作用称为腐败作用。

生物固氮作用(biological nitrogen fixatio):大气中的氮被原还为氨的过程。生物固氮只发生在少数的细菌和藻类中。

尿素循环(urea cycle):是一个由4步酶促反应组成的,可以将来自氨和天冬氨酸的氮转化为尿素的循环。尿素循环是发生在脊椎动物的肝脏中的一个代谢循环。

脱氨(deamination):在酶的催化下从生物分子(氨基酸或核苷酸)中除去氨基的过程。

氧化脱氨(oxidative deamination):α-氨基酸在酶的催化下脱氨生成相应的α-酮酸的过程。氧化脱氨实际上包括氧化和脱氨两个步骤。(脱氨和水解)

转氨(transamination):一个α-氨基酸的α-氨基借助转氨酶(aminotransferase)的催化作用,将氨基转移到一个α-酮酸的酮基的位置,从而生成相应的α-氨基酸的过程,同时原来的α-氨基酸则转变为相应地α-酮酸,此反应是可逆的。

乒乓反应(ping-pong reaction):在该反应中,酶结合一个底物并释放一个产物,留下一个取代酶,然后该取代酶再结合第二个底物和释放出第二个产物,最后酶恢复到它的起始状态。

生糖氨基酸(glucongenic amino acid):降解可生成能作为糖异生前体的分子,例如丙酮酸或柠檬酸循环中间代谢物的氨基酸。

生酮氨基酸(acetonegenic amino acid):降解可生成乙酰CoA或酮体的氨基酸。

苯酮尿症(phenylketonuria):是由于苯丙氨酸羟化酶缺乏引起苯丙酸堆积的代谢遗传病。缺乏丙酮酸羟化酶,苯丙氨酸只能靠转氨生成苯丙酮酸,病人尿中排出大量苯丙酮酸。苯丙酮酸堆积对神经有毒害,使智力发肓出现障碍。

尿黑酸症(alcaptonuria):是酪氨酸代谢中缺乏尿黑酸酶引起的代谢遗传病。这种病人的尿中含有尿黑酸,在碱性条件下暴露于氧气中,氧化并聚合为类似于黑色素的物质,从而使尿成黑色。

氮平衡(nitrogen balance): 摄入食物的含氮量与排泄物(尿与粪)中含氮量之间的关系,包括氮总平衡、氮正平衡、氮负平衡三种平衡,可以反映体内蛋白质代谢的概况。(不考)

氨基酸代谢库(metabolic pool):食物蛋白经消化吸收的氨基酸(外源性氨基酸)与体内组织蛋白降解产生的氨基酸(内源性氨基酸)混在一起,分布于体内各处参与代谢,称为氨基酸代谢库。

α-磷酸甘油穿梭(α-glycerophosphate  shuttle):在哺乳动物的脑、骨骼肌中,当胞液的NADH较多时,在胞液中磷酸甘油脱氢酶的作用下,使磷酸二羟丙酮还原成磷酸甘油,后者通过线粒体外膜,再经位于线粒体内膜胞液侧的磷酸甘油脱氢酶的催化下,氧化生成磷酸二羟丙酮和FADH2。磷酸二羟丙酮可传出线粒体外膜至胞液继续进行穿梭,而FADH2则进入琥珀酸氧化呼吸链同时生成1.5molATP。(1、存在于脑和骨骼肌;2、过程可用图示;3、NADH被转运入线粒体进行氧化磷酸化;4、最终生成1.5molATP)

苹果酸-天冬氨酸穿梭 (malate-asparate  shuttle):该穿梭机制存在于心肌和肝中,胞液中的NADH在苹果酸脱氢酶的作用下,使草酰乙酸还原生成苹果酸,后者通过线粒体内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的作用下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成2.5molATP。线粒体内的草酰乙酸经谷草转氨酶的作用生成天冬氨酸,后者经酸性氨基酸载体转运出线粒体,再转变成草酰乙酸,继续进行穿梭。(1、存在于肝和心肌;2、过程可用图示;3、NADH被转运入线粒体进行氧化磷酸化;4、最终生成2.5molATP)

一碳单位(one carbon unit):某些氨基酸代谢过程中产生的只含有一个碳原子的基团称为一碳单位,其代谢的辅基是四氢叶酸。一碳单位参与嘌呤、胸腺嘧啶的合成,主要的一碳单位有甲基、甲烯基、甲炔基、甲酰基和亚氨甲基,一碳单位主要来自丝氨酸,甘氨酸,组氨酸及色氨酸的分解代谢。

甲硫氨酸循环(methionine cycle):  甲硫氨酸和ATP作用转变成S-腺苷甲硫氨酸(SAM),SAM是甲基的直接供体,参与许多甲基化反应,与此同时产生S-腺苷同型半胱氨酸进一步转变成同型半胱氨酸,后者可接受N5—CH3—FH4的甲基重新生成甲硫氨酸,形成一个循环过程称作甲硫氨酸循环。其生理意义是:①SAM提供甲基以进行体内广泛存在的甲基化反应;②N5—CH3—FH4提供甲基合成甲硫氨酸,同时使N5—CH3—FH4的FH4释放,再参与一碳单位的代谢。

联合脱氨基作用(transdeamination):两种脱氨基方式的联合作用,使氨基酸脱下α-氨基生成α-酮酸的过程,包括转氨基偶联氧化脱氨基作用和转氨基偶联嘌呤核苷酸循环,既是氨基酸脱氨基的主要方式,也是体内合成非必需氨基酸的重要方式。

肝昏迷(Hepatic coma)肝脏病变不能解除AA代谢产生的氨的毒性,一般通过在脑中与Glu形成Gln实现解毒,Glu用于解毒,须消耗TCA的中间产物α-酮戊二酸而导致TCA中间产物的流失,阻滞TCA的进行,影响脑中能量代谢,造成昏迷-肝昏迷。(高血氨症引起肝昏迷,Gln是氨的运输和解读形式)

嘌呤核苷酸循环(purine nucleotide cycle):骨骼肌和心肌主要通过嘌呤核苷酸循环进行脱氨基作用。氨基酸首先通过连续的转氨基作用将氨基酸的氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸代琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氢酶催化下脱去氨基。由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用。

变构调节 (allosteric regulation):小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性,这种调节称为酶的变构调节或别构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。

化学修饰调节:(chemicalmodification)酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性改变,这种调节称为酶的化学修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。

变构酶(allosteric enzyme):指代谢途径中参与变构调节的关键酶称为变构酶,变构酶常为多个亚基构成的寡聚体,有催化亚基含结合底物催化反应的活化中心及调节亚基含与变构效应剂结合引起调节作用的调节部位,对酶催化活性调节的方式称为变构效应,具有协同效应。

变构效应剂(allosteric effector):与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性的底物、终产物与其他小分子代谢物质,称为变构效应剂,引起酶活性增加的变构效应剂称变构激活剂,引起酶活性降低的变构效应剂称变构抑制剂。

生物转化作用(Biotransformation):机体将来自体外的非营养物质在肝脏进行氧化、还原、水解和结合反应,使这些物质生物活性或毒性降低甚至消除,这一过程称为生物转化作用。生物转化的对象包括内源性的激素、胺类等和外源性的药物、毒物等非营养物质。肝是主要器官,但在肺、肾、胃肠道和皮肤也有一定生物转化功能。意义:对体内的非营养物质进行转化,使其灭活或解毒;更为重要的是可使这些物质的溶解度增加,易于排出体外。

胆汁酸的肝肠循环(bile acid enterohepatic circulation):在肝细胞合成的初级胆汁酸,随胆汁进入肠道,协助脂类物质的消化吸收后,受肠菌作用转变为次级胆汁酸。肠道中各种胆汁酸约95%被肠道重吸收经门静脉入肝,并同新合成的胆汁酸一起再次被排入肠道,这一过程被称为胆汁酸的肠肝循环。意义:将有限的胆汁酸反复利用以满足人体对胆汁酸的生理需要。

胆素原的肠肝循环(bilinogen enterohepatic circulation):肠道中有少量的胆素原可被肠粘膜细胞重吸收,经门静脉入肝,其中大部分再随胆汁排入肠道,形成胆素原的肠肝循环。只有少量经血液循环入肾并随尿排出,胆素原接触空气后被氧化成尿胆素,后者是尿的主要色素。


                                 酶(enzyme)

酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考)酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。

酶的活性中心(active center of enzymes): 酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。

酶的变构调节(allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。

酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。

酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。              程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。

同工酶(isoenzyme /isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。

脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。

酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25ºC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。

比活(specific activity):每分钟每毫克酶蛋白在25ºC下转化的底物的微摩尔数。比活是酶纯度的测量。

活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。

活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。

酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。

靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。

初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。

米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:V=Vmax[S]/(Km+[S])

米氏常数(Michaelis constant,Km):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(Vmax)一半时的底物浓度。

催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。

双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。

竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而Vmax不变。

非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。

反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。

丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。

调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。

别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。

别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。

别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。

齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。

序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。


                               

                             糖

变旋(mutarotation):是指一种旋光异构体,例如吡喃糖,呋喃糖或糖苷溶于水中伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。

糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O-糖苷键和N-糖苷键。

寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。

糖复合物(glycoconjugate)糖类与蛋白质、脂质等生物分子形成的共价结合物如糖蛋白、蛋白聚糖、糖脂等,总称为糖复合物或复合糖。

多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。

还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。

淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。

糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。

极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。

肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。

糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。

蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。

胰高血糖素(glucagon)指在胰脏内合成,由胰岛细胞分泌的一种多肽激素(29肽),与胰岛素的作用相拮抗。胰高血糖素通过刺激糖原分解提高血糖水平,是胰脏细胞对血糖浓度做出响应的重要信号分子。

耐糖(sugar tolerance)正常人口服或注射一定量的葡萄糖,血糖的浓度暂时升高,并刺激胰岛素分泌增多,促使大量葡萄糖合成糖原加以贮存,在短时间内血糖课降至空腹水平,这种现象称为耐糖现象。反映人体处理给予葡萄糖的能力,临床上用于检查人体糖代谢机能。

发酵(fermentation):营养分子(Eg葡萄糖)产能的厌氧降解。在乙醇发酵中,丙酮酸转化为乙醇和CO2。巴斯德效应(Pasteur effect):氧存在下,酵解速度放慢的现象。

柠檬酸循环(citric acid cycle):也称为三羧酸循环(TAC),Krebs循环。是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。

回补反应(anaplerotic reaction):酶催化的,补充柠檬酸循环中间代谢物供给的反应,例如由丙酮酸羧化酶生成草酰乙酸的反应,还有奇数碳脂肪酸分解产生琥珀酸CoA,氨基酸的转氨代谢等反应都可以根据生理需要作为TCA循环的回补反应。

乙醛酸循环(glyoxylate cycle):是某些植物,细菌和酵母中柠檬酸循环的修改形式,通过该循环可以收乙乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤。

两用代谢途径(amphibolic pathway) 既可用于代谢物分解,又可用于合成的代谢途径,往往是物质代谢间的枢纽。如三羧酸循环,既是糖、脂、蛋白彻底氧化的最后途径,又可以为糖、氨基酸的生物合成提供所需的碳骨架和能量。

糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。

糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程,主要在肝、肾细胞的胞浆及线粒体。关键酶主要有丙酮酸羧化酶,磷酸烯醇式丙酮酸羧激酶,果糖双磷酸酶-1和葡萄糖-6-磷酸酶。糖异生主要生理作用是维持血糖水平的恒定,糖异生也是补充或恢复肝糖原储备的重要途径。

底物水平磷酸化(substrate level phosphorylation):物质在脱氢或脱水的过程中,偶联生成高能键,底物分子内部能量重新分布,使ADP(GDP)磷酸化生成ATP(GTP)的过程。ADP或某些其它的核苷-5′二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。这种磷酸化与电子的转递链无关。

乳酸循环(lactate cycle or cori cycle):又称可立氏循环(Cori cycle),肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为乳酸循环,也称Cori循环,生理意义:乳酸再利用,避免了乳酸的损失,防止乳酸的堆积引起酸中毒,间接调节血糖。

戊糖磷酸途径(pentose phosphare parhway,PPP,HMP):那称为磷酸已糖支路。是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解的两用人才个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。

糖醛酸途径(glucuronate pathway):从葡萄糖-6-磷酸或葡萄糖-1-磷酸开始,经UDP-葡萄糖醛酸生成葡萄糖醛酸和抗坏血酸的途径。但只有在植物和那些可以合成抗坏血酸的动物体内,才可以通过该途径合成维生素C。

无效循环(futile cycle):也称为底物循环。一对酶催化的循环反应,该循环通过ATP的水解导致热能的释放。Eg葡萄糖+ATP=葡萄糖6-磷酸+ADP与葡萄糖6-磷酸+H2O=葡萄糖+P i反应组成的循环反应,其净反应实际上是ATP+H2O=ADP+Pi。

磷酸解作用(phosphorolysis)::通过在分子内引入一个无机磷酸,形成磷酸脂键而使原来键断裂的方式。实际上引入了一个磷酰基。

半乳糖血症(galactosemia):人类的一种基因型遗传代谢缺陷,是由于缺乏1-磷酸半乳糖尿苷酰转移酶,导致婴儿不能代谢奶汁中乳糖分解生成的半乳糖。

乳糖不耐症(Lactose intolerance) 乳糖酶缺乏,乳糖不能进入血液,小肠乳糖升高引起渗透性腹泻,肠道细菌是乳糖发酵产生大量的气体,如氢气、CO2、甲烷等。

尾部生长(tailward growth):一种聚合反应机理经过私有化的单体的头部结合到聚合的尾部,连接到聚合物尾部的单体的尾部又生成了接下一个单体的受体。


                                 脂类

脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。饱和脂肪酸(saturated fatty acid):不含有-C=C-双键的脂肪酸。不饱和脂肪酸(unsaturated fatty acid):至少含有-C=C-双键的脂肪酸。

必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,如亚油酸,亚麻酸,花生四烯酸。

三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。

磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。

鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。

鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。

卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。

脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。

脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。

内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。

外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。

流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。

脂肪动员(fat mobilization):是指储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。在脂肪动员中,激素敏感性三酰甘油脂肪酶(HSL)是限速酶。

脂肪酸的β-氧化(β-oxidation of fatty acid):脂酰CoA进入线粒体基质后,在脂肪酸的β-氧化多酶复合体的催化下从脂酰基的β-碳原子开始,进行脱氢、加水、再脱氢、硫解四步连续反应,脂酰基断裂生成一分子乙酰CoA及一分子比原来少两个碳原子的脂酰CoA,此过程即脂肪酸的β-氧化。在胞液、线粒体中反应,除脑组织外,大多数组织均可进行, 其中肝、肌肉最活跃。肉碱脂酰转移酶Ⅰ是脂肪酸β-氧化的限速酶。

酮体(ketone bodies):在肝细胞线粒体中以β-氧化生成的乙酰CoA为原料转化成乙酰乙酸、β-羟丁酸和丙酮,三者统称为酮体。是脂肪酸在肝中分解的正常中间代谢产物,供肝外组织利用,是肝脏输出能源的一种形式。过量则导致酮症酸中毒等疾病。

19.呼吸链(respiratory chain):在生物氧化过程中,代谢物脱下的成对氢原子(2H)通过线粒体上多种酶和辅酶所催化的连锁反应的逐步传递,最终与氧结合生成水,并偶联ATP的生成,这一系列酶和辅酶称为呼吸链,又称电子传递链(electron transfer chain)。

20.氧化磷酸化 (oxidative phosphorylation):是指代谢物脱下的成对氢原子(2H)在呼吸链电子传递过程中偶联ADP磷酸化并生成ATP,最终与氧结合生成水,又称为偶联磷酸化。氧化磷酸化是体内生成ATP的主要方式。


                            维生素和激素

维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。

水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。

脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。

生物素(biotin):B族维生素之一,又称维生素H。由噻吩环和尿素结合而成的双环化合物,侧链上有一戊酸。生物素与细胞内CO2固定或羧化作用有关,是很多需要ATP的羧化酶的辅助因子,起羧基载体作用。食用鸡蛋清(含抗生物素蛋白)过多或长期服抗生素易造成缺乏。

转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。

激素(hormone):一类由内分泌器官合成的微量的化学物质,它由血液运输到靶组织起着信使的作用,调节靶组织(或器官)的功能。

激素受体(hormone receptor):位于细胞表面或细胞内,结合特异激素并引发细胞响应的蛋白质。

第二信使(second messenger):响应外部信号(第一信使),例如激素,而在细胞内合成的效应分子,例如cAMP,肌醇三磷酸或二酰基甘油等。第二信使再去调节靶酶,引起细胞内各种效应。

级联放大(cascade amplification):在体内的不同部位,通过一系列酶的酶促反应来传递一个信息,并且初始信息在传递到系列反应的最后时,信号得到放大,这样的一个系列叫作级联系统。

G蛋白(G protein):地细胞内信号传导途径中起着重要作用的GTP结合蛋白,由α,β,γ三个不同亚基组成。激素与激素受体结合诱导GTP跟G蛋白结合的GDP进行交换结果激活位于信号传导途径中下游的腺苷酸环化酶。G蛋白将细胞外的第一信使肾上腺素等激素和细胞内的腺苷酸环化酶催化的腺苷酸环化生成的第二信使cAMP联系起来。G蛋白具有内源GTP酶活性。

激素效应元件(hormone response element,HER):指内固醇甲状腺素等激素受体在核内染色质与一段短的DNA序列(12~20bp)结合,这类受体结合DNA后可改变相邻基因的表达。


第八章  核苷酸代谢

从头合成途径(de novo synthesis pathway): 利用磷酸核糖、氨基酸、一碳单位及CO2等简单物质为原料合成嘌呤或嘧啶核苷酸的过程,称为从头合成途径,是体内的主要合成途径。

补救合成途径(salvage synthesis pathway):利用体内游离嘌呤或嘧啶碱基和游离嘌呤或嘧啶核苷,经简单反应过程生成嘌呤或嘧啶核苷酸的过程。在部分组织如脑、骨髓中只能通过此途径合成核苷酸。

痛风(gout):是尿酸过量生产或尿酸排泻不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨,软组织,肾脏以及关节处。在关节处的沉积会造成剧烈的疼痛。

别嘌呤醇(allopurinol):是结构上烦恼于黄嘌呤的化合物(在嘌呤环上第七位是C,第八位是N),对黄嘌呤氧化酶有很强的抑制作用,常用来治疗痛风。

自杀底物(Suicide Substrate)结构与次黄嘌呤相似的别嘌呤醇(allopurinol),在黄嘌呤氧化酶的作用下氧化为别黄嘌呤(alloxanthine),后者与酶中心的Mo(IV)牢固结合,使Mo(IV)不易转变成Mo(VI)而成为酶的灭活物,这种底物类似物被称为自杀作用(底)物,这种作用被称为自杀作用。别嘌呤醇还与PRPP作用生成相应核苷酸,抑制PRPP-AT,使IMP合成减少。

Lesch-Nyhan综合症(Lesch-Nyhan syndrome):也称为自毁容貌症,是由于次黄嘌呤-鸟嘌呤磷酸核糖转移酶的遗传缺陷引起的。缺乏该酶使得次黄嘌呤和鸟嘌呤不能转换为IMP和GMP,而是降解为尿酸,过量尿酸将导致Lesch-Nyhan综合症。

葡萄糖-丙氨酸循环(Glucose-alanine cyle)肌肉中的氨基酸经转氨作用将氨基转给丙酮酸生成丙氨酸,丙氨酸经血液运到肝中,再经联合脱氨基作用释放出氨,用于合成尿素。生成的丙酮酸经糖异生生成葡萄糖,经血液运输到肌肉,糖酵解生成丙酮酸,再接受氨基生成丙氨酸,这个途径反复在肌肉和肝中进行。

槭糖尿病(Maple sugar disease) 由于先天缺乏支链氨基酸(Val、Leu、Ile)引起的症状,是一种常染色体隐性遗传病,患者缺乏分支酮酸脱羟酶,使分支氨基酸分解受阻,大量积累随尿排出,带有枫糖浆的香甜气味。出生后不久呼吸困难、四肢僵硬、痉挛,若不治数月内死亡。

乳清酸尿症(Orotic aciduria)一种遗传病,由于缺乏乳清酸磷酸核糖转移酶和乳清酸脱羧酶引起嘧啶代谢障碍,尿中出现大量乳清酸,导致生长迟缓和重度贫血。临床用尿嘧啶或胞嘧啶治疗,尿嘧啶经磷酸化生成UMP,抑制CPSI活性,从而抑制嘧啶核苷酸的从头合成。

                           核酸的结构与功能

核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。

cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。

磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。

夏格夫法则(Chargaff’s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。

DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。

大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。

DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。

拓扑异构酶(topoisomerse):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ、通过切断DNA中的一条链减少负超螺旋,增加一个连环数。某些拓扑异构酶Ⅱ也称为DNA促旋酶。

核小体(nucleosome):用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核构成的。

染色质(chromatin): 是存在与真核生物间期细胞核内,易被碱性染料着色的一种无定形物质。染色质中含有作为骨架的完整的双链DNA,以及组蛋白`非组蛋白和少量的DNA。

染色体(chromosome):是染色质在细胞分裂过程中经过紧密缠绕`折叠`凝缩和精细包装形成的具有固定形态的遗传物质存在形式。简而言之,染色体是一个大的单一的双链DNA分子与相关蛋白质组成的复合物,DNA中含有许多贮存和传递遗传信息的基因。

熔解温度(melting temperature,Tm):通常将加热变性使DNA的双螺旋结构失去一半时的温度称为该DNA的解链温度,用Tm表示,是引物的一个重要参数。

核酸内切酶(exonuclease): 核糖核酸酶和脱氧核糖核酸酶中能够水解核酸分子内磷酸二酯键的酶。 核酸外切酶(exonuclease):从核酸链的一端逐个水解核甘酸的酶。

限制性内切酶(restriction endonuclease):一种在特殊核甘酸序列处水解双链DNA的内切酶。Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。

限制酶图谱(restriction map):同一DNA用不同的限制酶进行切割,从而获得各种限制酶的切割位点,由此建立的位点图谱有助于对DNA的结构进行分析。

反向重复序列(inverted repeat sequence):在同一多核甘酸内的相反方向上存在的重复的核甘酸序列。在双链DNA中反向重复可能引起十字形结构的形成。

重组DNA技术(recombination DNA technology):也称之为基因工程(genomic engineering).利用限制性内切酶和载体,按照预先设计的要求,将一种生物的某种目的基因和载体DNA重组后转入另一生物细胞中进行复制`转录和表达的技术。

基因(gene):也称为顺反子(cistron).泛指被转录的一个DNA片段。在某些情况下,基因常用来指编码一个功能蛋白或DNA分子的DNA片段。  

DNA的变性与复性(denaturation and renaturation of DNA): 双链DNA(dsDNA)在变性因素(如过酸、过碱、加热、尿素等)影响下,解链成单链DNA(ssDNA)的过程称之为DNA变性。DNA变性后,生物活性丧失,但一级结构没有改变,所以在一定条件下仍可恢复双螺旋结构。热变性的DNA经缓慢冷却后,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,也称退火。

退火(annealing):既DNA由单链复性、变成双链结构的过程。来源相同的DNA单链经退火后完全恢复双链结构的过程,同源DNA之间`DNA和RNA之间,退火后形成杂交分子。

核酸分子杂交(hybridization of nucleic acids):是核酸研究中一项最基本的实验技术。其基本原理就是应用核酸分子的变性和复性的性质,使来源不同的DNA(或RNA)片段,按碱基互补关系形成杂交双链分子。杂交双链可以在DNA与DNA链之间,也可在RNA与DNA链之间形成。这种现象称为核酸分子杂交。简称杂交(hybridization)

增色效应与减色效应(hyperchromic effect and hypochromic effect): DNA变性时,双螺旋松解,碱基暴露,OD260值增高称之为增色效应;除去变性因素后,单链DNA依碱基配对规律恢复双螺旋结构,OD260值减小称为减色效应。

核酶(ribozyme):核酶是具有催化功能的RNA分子。大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。

 DNA的生物合成(复制)

1.半保留复制(semiconservative replication):DNA复制时,亲代DNA双螺旋结构解开,分别以解开的两股单链为模板,以dNTP(dATP、 dGTP 、dTTP 、dCTP)为原料,按照碱基互补的原则,合成与模板链互补的新链,从而形成两个子代DNA双链,其结构与亲代DNA双链完全一致。因子代DNA双链中的一股单链源自亲代,另一股单链为合成的新链,形成的双链与亲代双链的碱基序列完全一致,故称为半保留复制。

2.端粒(telomere):是位于真核细胞线性染色体末端的特殊结构,由一段串联重复的DNA短序列与端粒结合蛋白构成;端粒具有稳定染色体结构,防止末端降解和融合的功能;并维持DNA复制的完整性。端粒复制要靠具有反转录酶性质的端粒酶来完成。

3.端粒酶(telomerase ):由RNA和蛋白质构成的一种核糖核蛋白复合体,RNA分子含复制端粒DNA所需的核苷酸模板,蛋白质部分具有反转录酶活性,同时具有核酸内切酶活性。催化端粒DNA的合成,维持染色体末端的端粒结构。

4.逆转录和逆转录酶(reverse transcription and reverse transcriptase):指遗传信息从RNA流向DNA。即以RNA为模板,dNTP为原料,在逆转录酶催化下,合成与RNA互补的双链DNA的过程。逆转录酶 (依赖RNA的DNA聚合酶)为多功能酶, 具有三种酶活性:1)RNA指导的DNA聚合酶:利用病毒RNA作模板合成一条互补DNA链;2)RNase H:水解RNA-DNA杂化双链中的RNA链; 3)DNA指导的DNA聚合酶:以新合成的DNA链为模板合成另一条互补DNA链。

Klenow片段(Klenow fragment):E.coli DNA聚合酶I经部分水解生成的C末端605个氨基酸残基片段。该片段保留了DNA聚合酶I的5?-3?聚合酶和3?-5?外切酶活性,但缺少完整酶的5’-3’外切酶活性。

聚合酶链式反应(PCR):扩增样品中的DNA量和富集众多DNA分子中的一个特定的DNA序列的一种技术。在该反应中,使用与目的DNA序列互补的寡核苷酸作为引物,进行多轮的DNA合成。其中包括DNA变性,引物退火和在Tap DNA聚合酶催化下的DNA合成。

直接修复(direct repair):是通过一种可连续扫描DNA,识别出损伤部位的蛋白质,将损伤部位直接修复的方法。该修复方法不用切断DNA或切除碱基。

切除修复(excision repair):通过切除-修复内切酶使DNA损伤消除的修复方法。一般是切除损伤区,然后在DNA聚合酶的作用下,以露出的单链为模板合成新的互补链,最后用连接酶将缺口连接起来。

错配修复(mismatch repair):在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式。这种修复方式的过程是:识别出下正确地链,切除掉不正确链的部分,然后通过DNA聚合酶和DNA连接酶的作用,合成正确配对的双链DNA。  


第十一章     RNA的生物合成(转录)

遗传学中心法则(genetic central dogma):描述从一个基因到相应蛋白质的信息流的途径。遗传信息贮存在DNA中,DNA被复制传给子代细胞,信息被拷贝或由DNA转录成RNA,然后RNA翻译成多肽。不过,由于逆转录酶的反应,也可以以RNA为模板合成DNA。

 转录(transcription):在由RNA聚合酶和辅助因子组成的转录复合物的催化下,从双链DNA分子中拷贝生物信息生成一条RNA链的过程。

 模板链(template strand):可作为模板转录为RNA的那条链该链与转录的RNA碱基互补(A-U,G-C)。在转录过程中,RNA聚合酶与模板链结合,并沿着模板链的3´→5´方向移动,按照5´→3´方向催化RNA的合成。

编码链(coding strand):双链DNA中,不能进行转录的那一条DNA链,该链的核苷酸序列与转录生成的RNA的序列一致(在RNA中是以U取代了DNA中的T)。

核心酶(core enzyme):大肠杆菌的RNA聚合酶全酶由5个亚基组成(α2ββ’δ),没有δ基的酶叫核心酶。核心酶只能使已开始合成的RNA链延长,但不具有起始合成RNA的能力,必须加入δ基才表现出全部聚合酶的活性。

RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5´-三磷酸合成RNA的酶。

启动子(promoter):在DNA分子中,RNA聚合酶能够结合并导致转录起始的序列。

不对称转录(asymmetric transcription):有两重含义,一是指双链DNA分子中只有一股单链作为转录模板(模板链),另一股链不转录;二是模板链并非永远在同一单链上。

断裂基因(splite gene):真核生物的结构基因是由若干个编码区和非编码区互相间隔但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因。

外显子和内含子(exon and intron):在断裂基因及其初级转录产物上出现,并表达为RNA的核酸序列称为外显子(真核生物结构基因中为蛋白质编码的可转录序列)。内含子是隔断基因线性表达而在剪接过程中被除去的核苷酸序列(真核生物结构基因中不为蛋白质编码的可转录序列)。

剪接体(spliceosome):大的蛋白质RNA复合体,它催化内含子从mRNA前体中除去的反应。

RNA加工过程(RNA processing):将一个RNA原初转录产物转换成成熟RNA分子的反应过程。加工包括从原初产物中删除一些核苷酸,添加一些基因没有编码的核苷酸和对那些碱基进行共介修饰。

RNA剪接(RNA splicing):从DNA模板链转录出的最初转录产物中除去内含子,并将外显子连接起来形成一个连续的RNA分子的过程。

单核苷酸多态性(SNP)单个核苷酸A,T,C,G的改变而引起的DNA序列的改变,造成包括人类在内物种之间染色体基因组的多样性。 


第十二章  蛋白质的生物合成(翻译)

1,翻译(translation):在蛋白质合成期间,将存在于mRNA上代表一个多肽的核苷酸残基序列转换为多肽链氨基酸残基序列的过程。

 2,遗传密码(genetic code):核酸中的核苷酸残基序列与蛋白质中的氨基酸残基序列之间的对应关系。;连续的3个核苷酸残基序列为一个密码子,特指一个氨基酸。标准的遗传密码是由64个密码子组成的,几乎为所有生物通用。

 3,起始密码子(iniation codon):指定蛋白质合成起始位点的密码子。最常见的起始密码子是蛋氨酸密码:AUG

 4,终止密码子(termination codon):任何tRNA分子都不能正常识别的,但可被特殊的蛋白结合并引起新合成的肽链从翻译机器上释放的密码子。存在三个终止密码子:UAG ,UAA和UGA。

 密码子(condon):mRNA(或DNA)上的三联体核苷酸残基序列,该序列编码着一个指定的氨基酸 ,tRNA 的反密码子与mRNA的密码子互补。

 反密码子(anticodon):tRNA分子的反密码子环上的三联体核苷酸残基序列。在翻译期间,反密码子与mRNA中的互补密码子结合。

 简并密码子(degenerate codon):也称为同义密码子。是指编码相同的氨基酸的几个不同的密码子。

 氨基酸臂(amino arm):也称为接纳茎。tRNA分子中靠近3?端的核苷酸序列和5?端的序列碱基配对,形成的可接收氨基酸的臂(茎)。

 TψC臂(TψC arm):tRNA中含有胸腺嘧啶核苷酸-假尿嘧啶核苷酸-胞嘧啶核苷酸残基序列的茎-环结构。

 氨酰-tRNA(aminoacyl-tRNA):在氨基酸臂的3’端的腺苷酸残基共价连接了氨基酸的tRNA分子。

 同工tRNA(isoacceptor tRNA):结合相同氨基酸的不同的tRNA分子。

 摆动(wobble):处于密码子3?端的碱基与之互补的反密码子5?端的碱基(也称为摆动位置),例如I可以与密码子上3?端的U,C和A配对。由于存在摆动现象,所以使得一个tRNA反密码子可以和一个以上的mRAN密码子结合。

 氨酰-tRNA合成酶(aminoacyl-tRNA synthetase):催化特定氨基酸激活并共介结合在相应的tRNA分子3?端的酶。

 翻译起始复合物(translation initiation complex):由核糖体亚基,一个mRNA模板,一个起始的tRNA分子和起始因子组成并组装在蛋白质合成起始点的复合物。

 读码框(reading frame):代表一个氨基酸序列的mRNA分子的非重叠密码序列。一个mRNA读码框是由转录起始位置(通常是AUG密码)确定的。

 SD序列(Shine-Dalgarno sequence):mRNA中用于结合原核生物核糖体的序列。

 肽酰转移酶(peptidy transeferace):蛋白质合成期间负责转移肽酰基和催化肽键形成的酶。

 嘌吟毒素(puromycin):通过整合到生长着的肽链,引起肽链合成提前终止来抵制多肽名链合成的一种抗生素。

开放读码框(open reading frame):DNA或RNA序列中一段不含终止密码的连续的非重叠核苷酸密码。

信号肽(signal peptide):常指新合成多肽链中用于指导蛋白质夸膜转移(定位)的N-末端氨基酸序列(有时不一定在N端)。

转录因子(transcription factor):在转录起始复合物的组装过程中,与起动子区结合并与RNA聚合酶相互作用的一种蛋白质。某些转录因子在RNA延伸时一直维持着结合状态。

操纵子(operon):是由一个或多个相关基因以及调控他们转录的操纵因子启动子序列组成的基因表达单位。

操纵因子(operator):与特定阻遏蛋白相互作用调控一个基因或一组基因表达的DNA区。

结构基因(structural gene):编码一个蛋白质或一个RNA的基因。

转录激剂(transcriptional activator):通过曾加RNA聚合酶的活性来加快转录速度的一种调节DNA结合蛋白。

阻遏物(repressor):与一个基因的调控序列或操纵基因结合以阻止该基因恩录的一类蛋白质。

衰减作用(attenuation):一种翻译调控机制。在该机制中,核糖体沿着mRNA分子的移动的速度决定转录是进行还是终止。

亮氨酸拉链(leucine zipper):出现地DNA结合蛋白质和其它蛋白质中的一种结构基元(motif)。当来自同一个或不同多肽链的两个两用性的α-螺旋的疏水面(常常含有亮氨酸残基)相互作用形成一个圈对圈的二聚体结构时就形成了亮氨酸拉链。

锌脂(zinc fingre):也是一种常出现在DNA结合蛋白中的一种结构基元。是由一个含有大约30个氨基酸的环和一个与环上的4个Cys或2个Cys和2个His配位的Zn2构成,形成的结构像手指状。 

多聚核蛋白体(polyribosome):一条mRNA模板链可附着10-100个核糖体,这些核糖体依次结合起始密码子并沿5’-3’移动,同时进行肽链合成,这种mRNA与多个核糖体形成的聚合物称多聚核糖体。多聚核糖体的形成可以大大提高蛋白质生物合成的速度和效率。

信号肽(signal peptide):各种新生分泌蛋白的N端存在保守的氨基酸序列称信号肽,约13-36个氨基酸残基,可分为N端碱性区、疏水区和C端加工区三个区段。可将合成的蛋白质引导至细胞的适当靶部位,是决定蛋白质靶向输送特性的重要元件。

开放阅读框架(open reading frame, ORF):从mRNA 5¢端起始密码子AUG到3¢端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一条蛋白质多肽链,称为开放阅读框架。


第十三章  基因表达调控

1.组成性基因表达(constitutive gene expression):无论表达水平高低,管家基因较少受环境因素影响,而是在个体各个生长阶段的大多数或几乎全部组织中持续表达,或变化很小。区别于其他基因,这类基因表达被视为组成性基因表达。

2.管家基因( housekeeping gene): a)是一类对维持细胞基本生命活动所必需的基因 b)几乎在所有的细胞和所有的发育阶段都持续表达 c)其表达基本不受环境因素的影响 d)主要受启动子的调节  管家基因的表达属于组成性表达

3.操纵子(operon):原核生物绝大多数基因按功能相关性成簇地串联、密集于染色体上,共同组成一个转录单位──操纵子。一个操纵子只含一个启动序列及数个可转录的编码基因。通常,这些编码基因可转录出多顺反子mRNA。原核基因的协调表达就是通过调控单个启动基因的活性来完成的。

4.增强子(enhancer):指远离转录起始点、决定基因的时间、空间特异性、增强启动子转录活性的DNA序列。其发挥作用的方式通常与方向、距离无关。 A.是远离转录起始点的、激活基因转录的正性调控元件。增强子与转录激活因子最终增强RNA聚合酶的活性B.决定基因表达的空间和时间特异性C.其作用与其位置和方向无关D.增强子与启动子在结构上可重叠,在功能上互相依赖

5.顺式作用元件(cis-acting element):能调控自身基因表达活性的特异DNA序列。是RNA-pol和TF识别结合的位点。据其在基因中的位置、转录激活作用的性质及发挥作用的方式分为:启动子、增强子和沉默子。

6.反式作用因子(trans-acting factor):由某一基因表达产生的蛋白质因子,通过与另一基因的特异的顺式作用元件结合,调控该基因的表达,这种蛋白质因子称为反式作用因子,也叫转录调节因子。转录调节因子按功能特性分为基本转录因子和特异转录因子。

第十四章  基因重组和基因工程

DNA克隆:应用酶学的方法, 在体外将各种来源的遗传物质DNA与载体DNA接合成具有自我复制能力的DNA分子—复制子,再通过转化或转染宿主细胞,筛选出含有目的基因的转化子细胞,经扩增提取获得大量同一DNA分子的过程,也称基因克隆、重组DNA。

基因组文库 (genomic DNA library):是指包含某一生物细胞全部基因组DNA序列的克隆群体,它以DNA片段的形式贮存着该生物的全部基因组DNA的信息。其构建过程是分离生物体的全部染色体DNA,用限制性核酸内切酶随机切割成长短大致相同的数以万计的片段,将所有片段重组于同一类载体上,便得到许多重组体,将重组体全部转化入宿主菌中保存起来,就形成基因文库。

cDNA文库 (cDNA library) :是指包含某一组织细胞在一定条件下所表达的全部mRNA经反转录而合成的cDNA序列的克隆群体,它以cDNA片段的形式贮存着该组织细胞的基因表达信息。其构建过程是将细胞表达的所有mRNA经反转录合成cDNA,与适当的载体连接后,转入宿主细胞而获得的克隆群体,包含了细胞表达的各种mRNA信息。

RNAi 一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的翻译或转录来抑制基因表达。当细胞中导入内源性mRNA编码区同源的双链RNA,该mRNA发生降解而导致基因表达沉默。

第十五章 细胞信号转导

第二信使(secondary messenger):通常将Ca2+ 、DAG、IP3 、Cer、cAMP、cGMP等在细胞内传递信息的小分子化合物称为第二信使,其作用是对胞外信号起转换和放大的作用。细胞表面受体接受胞外信号后,经过信号转换激活质膜上的效应器,产生细胞内的信息物质第二信使,进一步将信息传递到细胞内,产生相应的生物学效应。


第二十章 癌基因与抑癌基因

1.癌基因(oncogene):能在体外引起细胞转化,在体内诱发肿瘤的基因,包括病毒癌基因和细胞癌基因。大多数癌基因是正常原癌基因的突变形式,后者参与调控细胞的生长和分裂。

2.抑癌基因(tumor suppressor gene ):是一类能抑制细胞过度生长增殖,促进细胞分化,从而抑制肿瘤发生的负调控基因。其丢失或失活可能导致肿瘤的发生。

 

第二十一章 常用分子生物学技术的原理及应用

1.DNA印迹技术(Southern blotting):是将基因组DNA经限制性内切酶消化后进行琼脂糖凝胶电泳,变性处理后再利用毛细作用将胶中的DNA分子转移并固定到膜性支持物上(NC膜)进行杂交反应的技术。主要用于基因组DNA的分析,亦可分析重组质粒和噬菌体。

2.RNA印迹技术(Northern blotting):指RNA经琼脂糖凝胶电泳分离后转移至膜性支持物上(NC膜)用于杂交反应的技术。主要用于检测某一组织或细胞中已知的特异mRNA的表达水平以及比较不同组织和细胞中的同一基因的表达情况。无需限制性内切酶切割。

3.蛋白质印迹术或免疫印迹技术(Western  blotting):指蛋白质经聚丙烯酰胺凝胶电泳分离之后转移(电转)到膜性支持物上(NC膜),再与溶液中的抗体探针相互结合的技术。主要用于检测样品中特异性蛋白质的存在、细胞中特异蛋白质的半定量分析以及蛋白质分子间的相互作用研究等。


医学名词解释的评论 (共 条)

分享到微博请遵守国家法律