欢迎光临散文网 会员登陆 & 注册

垂足曲线方程的一般求法

2022-07-11 11:22 作者:现代微积分  | 我要投稿

原视频:BV1kT411g7Mw

(x_0%2Cy_0)是曲线f(x%2Cy)%3D0上的一点,(x_1%2Cy_1)是一个定点

则点(x_0%2Cy_0)关于曲线f(x%2Cy)%3D0的切线方程为:

y-y_0%3Dk(x-x_0)

(其中k是切线斜率,需要通过对曲线进行隐微分得到y'后代入坐标解得,即k为关于x₀和y₀的表达式)

过点(x_1%2Cy_1)作该切线的垂线,其方程为:

y-y_1%3D-%5Cfrac%7B1%7D%7Bk%7D%20(x-x_1)

联立:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20y-y_0%3Dk(x-x_0)%5C%5Cy-y_1%3D-%5Cfrac%7B1%7D%7Bk%7D%20(x-x_1)%0A%5Cend%7Bmatrix%7D%5Cright.%20

解得:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20x%3D%5Cfrac%7Bky_1%2Bx_1%2Bk%5E2x_0-ky_0%7D%7Bk%5E2%2B1%7D%20%5C%5C%0Ay%3D%5Cfrac%7Bk%5E2y_1%2Bkx_1-kx_0%2By_0%7D%7Bk%5E2%2B1%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%20

设垂足坐标为:(x₂,y₂)

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20x_2%3D%5Cfrac%7Bky_1%2Bx_1%2Bk%5E2x_0-ky_0%7D%7Bk%5E2%2B1%7D%20%5C%5C%0Ay_2%3D%5Cfrac%7Bk%5E2y_1%2Bkx_1-kx_0%2By_0%7D%7Bk%5E2%2B1%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%20

若方程组有解(变换可逆),根据相关点法,需把x₀,y₀当成未知量解上述方程

将x₀和y₀用x₂和y₂表示

最后代入f(x₀,y₀)=0将x₀,y₀换成x₂,y₂即得垂足运动轨迹方程


若方程组无解(变换不可逆),则采用其他方法,比如参数法


ps:有关相关点法的介绍和注意事项可参考该文章评论区置顶的专栏

上述是一般解法,需要具体的曲线具体分析,下面我们举视频中的例子来使用。

(1)圆x%5E2%2By%5E2%3Dr%5E2

隐微分得:2xdx%2B2ydy%3D0

y'%3D%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D-%5Cfrac%7Bx%7D%7By%7D%20

k%3D-%5Cfrac%7Bx_0%7D%7By_0%7D%20

代入解方程,显然比较困难,于是采用参数法:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0Ax_0%3Drcost%20%5C%5C%0Ay_0%3Drsint%0A%5Cend%7Bmatrix%7D%5Cright.%20

k%3D-%5Cfrac%7Bcost%7D%7Bsint%7D%20

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20x_2%3D-y_1sintcost%2Bx_1sin%5E2t%2Brcos%5E3t%2Brsin%5E2tcost%5C%5C%0Ay_2%3Dy_1cos%5E2t-x_1sintcost%2Brsintcos%5E2t%2Brsin%5E3t%0A%5Cend%7Bmatrix%7D%5Cright.%20

上述即圆关于点(x₁,y₁)的垂足曲线的参数方程


当绿点(定点)在圆上时:


(2)抛物线y%3Dax%5E2

y'%3D2ax

k%3D2ax_0

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20x_2%3D%5Cfrac%7B2ax_0y_1%2Bx_1%2B2a%5E2x_0%5E3%7D%7B4a%5E2x_0%5E2%2B1%7D%20%20%5C%5C%0Ay_2%3D%5Cfrac%7B4a%5E2x_0%5E2y_1%2B2ax_1x_0-ax_0%5E2%7D%7B4a%5E2x_0%5E2%2B1%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%20

上述为关于x₀,y₀的方程,仍比较困难

因此需采用其他方法,如参数法

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20x_0%3Dt%20%5C%5C%0Ay_0%3Dat%5E2%0A%5Cend%7Bmatrix%7D%5Cright.%20

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20x_2%3D%5Cfrac%7B2aty_1%2Bx_1%2B2a%5E2t%5E3%7D%7B4a%5E2t%5E2%2B1%7D%20%20%5C%5C%0Ay_2%3D%5Cfrac%7B4a%5E2t%5E2y_1%2B2ax_1t-at%5E2%7D%7B4a%5E2t%5E2%2B1%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%20

上述即抛物线关于点(x₁,y₁)的垂足曲线的参数方程




垂足曲线方程的一般求法的评论 (共 条)

分享到微博请遵守国家法律