2023年数学建模美赛备战参考—插值与拟合
2023年数学建模美赛备战参考—插值与拟合 插值:求过已知有限个数据点的近似函数。
拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。
基本的、常用的插值方法:拉格朗日多项式插值、牛顿插值、分段线性插值、Hermite插值和三次样条插值。
许多工程技术中提出的计算问题对插值函数的光滑性有较高要求,如飞机的机翼外形,内燃机的进、排气门的凸轮曲线,都要求曲线具有较高的光滑程度,不仅要连续,而且要有连续的曲率,这就导致了样条插值的产生。
所谓样条(Spline)本来是工程设计中使用的一种绘图工具,它是富有弹性的细木条或细金属条。绘图员利用它把一些已知点连接成一条光滑曲线(称为样条曲线),并使连接点处有连续的曲率。
实际中的许多问题,往往是既要求近似函数(曲线或曲面)有足够的光滑性,又要求与实际函数有相同的凹凸性,一般插值函数和样条函数都不具有这种性质。如果对于一个特殊函数进行磨光处理生成磨光函数(多项式),则用磨光函数构造出样条函数作为插值函数,既有足够的光滑性,而且也具有较好的保凹凸性,因此磨光函数在一维插值(曲线)和二维插值(曲面)问题中有着广泛的应用。
由积分理论可知,对于可积函数通过积分会提高函数的光滑度,因此,我们可以利用积分方法对函数进行磨光处理。
最小二乘优化是一类比较特殊的优化问题,在处理这类问题时,Matlab也提供了一些强大的函数。在Matlab优化工具箱中,用于求解最小二乘优化问题的函数有:lsqlin、
lsqcurvefit、lsqnonlin、lsqnonneg。
1