欢迎光临散文网 会员登陆 & 注册

如何真正从0到1打一场推荐系统赛事《入门版》

2022-07-29 10:03 作者:二次元的Datawhale  | 我要投稿

    与报纸、杂志、电视、广播这些传统的传播媒体广告相比,新生的互联网广告拥有天然优势:它能够追踪、研究用户的偏好,并在此基础上进行精准广告推荐和营销。

    CTR(Click-Through-Rate)即点击通过率,是衡量互联网广告效果的一项重要指标。这个问题是近几年各大平台研究的热点。本文借助华为全球校园AI算法精英赛题——广告-信息流跨域ctr预估,对该问题进行研究。

实践背景

赛题背景

广告推荐主要基于用户对广告的历史曝光、点击等行为进行建模,如果只是使用广告域数据,用户行为数据稀疏,行为类型相对单一。而引入同一媒体的跨域数据,可以获得同一广告用户在其他域的行为数据,深度挖掘用户兴趣,丰富用户行为特征。引入其他媒体的广告用户行为数据,也能丰富用户和广告特征。

赛题任务

本赛题基于广告日志数据,用户基本信息和跨域数据优化广告ctr预估准确率。目标域为广告域,源域为信息流推荐域,通过获取用户在信息流域中曝光、点击信息流等行为数据,进行用户兴趣建模,帮助广告域ctr的精准预估。

报名及数据下载

报名地址:

https://developer.huawei.com/consumer/cn/activity/digixActivity/digixdetail/101655281685926449?ha_source=dw&ha_sourceId=89000243

数据下载(没有参赛过的同学参考)

https://xj15uxcopw.feishu.cn/docx/doxcnufyNTvUfpU57sRyydgyK6




实践思路

本次比赛是一个经典点击率预估(CTR)的数据挖掘赛,任务是构建一种模型,根据用户的测试数据来预测这个用户是否点击广告。这是典型的二分类问题,模型的预测输出为 0 或 1 (点击:1,未点击:0)

机器学习中,关于分类任务我们一般会想到逻辑回归、决策树等算法,在本文实践代码中,我们尝试使用逻辑回归来构建我们的模型。我们在解决机器学习问题时,一般会遵循以下流程:

竞赛流程图

实践代码

  • 需要内存:1GB

  • 运行时间:5分钟

实践提升

我们完成了广告信息流跨域ctr预估实践的baseline任务,接下来可以从以下几个方向思考:

  • 继续尝试不同的预测模型或特征工程来提升模型预测的准确度

  • 尝试模型融合等策略

  • 查阅广告信息流跨域ctr预估预测相关资料,获取其他模型构建方法

参与内测

本文为Datawhale项目实践2.0教程,如果你也是在校生,还在入门阶段,可以进内测学习群,我们在学习反馈中一起优化教程。

点赞过100好像有点困难...

点赞过80,更新推荐系统竞赛《进阶版》

如何真正从0到1打一场推荐系统赛事《入门版》的评论 (共 条)

分享到微博请遵守国家法律