欢迎光临散文网 会员登陆 & 注册

量子场论(十一):时空中的粒子(二)

2022-12-24 06:31 作者:我的世界-华汁  | 我要投稿

(2)质量为零的粒子:p%5E2%3D0p%5E0%3E0

此时四维动量是类光的,取标准四维动量为k%5E%5Cmu%3D(%5Ckappa%2C0%2C0%2C%5Ckappa),其中κ>0。相应小群中的任意群元满足%7BW%5E%5Cmu%7D_%5Cnu%20k%5E%5Cnu%3Dk%5E%5Cmu

我们需要知道这个小群是啥,引入%5Ctilde%20k%5E%5Cmu%3D%5Cfrac%7Bk%5E%5Cmu%7D%7B%5Ckappa%7D%3D(1%2C0%2C0%2C1),易知这个四维矢量在小群变换下也不变。再引入类时四维矢量%5Ctilde%20t%5E%5Cmu%3D(1%2C0%2C0%2C0),定义小群元对它的作用为t%5E%5Cmu%3D%7BW%5E%5Cmu%7D_%5Cnu%5Ctilde%20t%5E%5Cnu。从而:

t%5E%5Cmu%5Ctilde%20k_%5Cmu%3D%7BW%5E%5Cmu%7D_%5Cnu%5Ctilde%20t%5E%5Cnu%5Ctilde%20k_%5Crho%7B(W%5E%7B-1%7D)%5E%5Crho%7D_%5Cmu%3D%7B%5Cdelta%5E%5Crho%7D_%5Cnu%5Ctilde%20t%5E%5Cnu%5Ctilde%20k_%5Crho%3D%5Ctilde%20t%5E%5Cnu%5Ctilde%20k_%5Cnu%3D1.%5Ctag%7B10.26%7D

考虑到%5Ctilde%20k%5E%5Cmu%3D%5Cfrac%7Bk%5E%5Cmu%7D%7B%5Ckappa%7D%3D(1%2C0%2C0%2C1),满足(10.26)的t%5E%5Cmu的一般形式为:

t%5E%5Cmu%3D(1%2B%5Czeta%2C%5Calpha%2C%5Cbeta%2C%5Czeta).%5Ctag%7B10.27%7D

另一方面,t%5E%5Cmu自己的内积为:

t%5E%5Cmu%20t_%5Cmu%3D%7B%5Cdelta%5E%5Cnu%7D_%5Cmu%20t%5E%5Cmu%20t_%5Cnu%3D%7BW%5E%5Crho%7D_%5Cmu%20t%5E%5Cmu%20t_%5Cnu%7B(W%5E%7B-1%7D)%5E%5Cnu%7D_%5Crho%3D%5Ctilde%20t%5E%5Crho%5Ctilde%20t_%5Crho%3D1.%5Ctag%7B10.28%7D

因此(1%2B%5Czeta)%5E2-%5Calpha%5E2-%5Cbeta%5E2-%5Czeta%5E2%3D1,因此:

%5Czeta%3D%5Cfrac12(%5Calpha%5E2%2B%5Cbeta%5E2)%2C%5Calpha%2C%5Cbeta%5Cin(-%5Cinfty%2C%2B%5Cinfty).%5Ctag%7B10.29%7D

考虑固有保时向洛伦兹变换:

%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)%3D%5Cbegin%7Bbmatrix%7D1%2B%5Czeta%26%5Calpha%26%5Cbeta%26-%5Czeta%5C%5C%5Calpha%261%260%26-%5Calpha%5C%5C%5Cbeta%260%261%26-%5Cbeta%5C%5C%5Czeta%26%5Calpha%26%5Cbeta%261-%5Czeta%5Cend%7Bbmatrix%7D.%5Ctag%7B10.30%7D

在其作用之下:

%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)%5Ctilde%20t%5E%5Cnu%3Dt%5E%5Cmu%3D%7BW%5E%5Cmu%7D_%5Cnu%5Ctilde%20t%5E%5Cnu.%5Ctag%7B10.31%7D

也就是说:

%5Ctilde%20t%5E%5Crho%3D%7B%5BT%5E%7B-1%7D(%5Calpha%2C%5Cbeta)%5D%5E%5Crho%7D_%5Cmu%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)%5Ctilde%20t%5E%5Cnu%3D%7B%5BT%5E%7B-1%7D(%5Calpha%2C%5Cbeta)%5D%5E%5Crho%7D_%5Cmu%7BW%5E%5Cmu%7D_%5Cnu%5Ctilde%20t%5E%5Cnu.%5Ctag%7B10.32%7D

也就是说,变换T%5E%7B-1%7D(%5Calpha%2C%5Cbeta)W保持%5Ctilde%20t%5E%5Cmu%3D(1%2C0%2C0%2C0)不变,所以,它必然是一个空间旋转变换。容易验证%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)k%5E%5Cnu%3Dk%5E%5Cmu,因此%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)是一个小群变换。因而小群变换T%5E%7B-1%7D(%5Calpha%2C%5Cbeta)W是保持k%5E%5Cmu%3D(%5Ckappa%2C0%2C0%2C%5Ckappa)不变的空间旋转变换,它必定是绕z轴的空间旋转变换,即满足:

T%5E%7B-1%7D(%5Calpha%2C%5Cbeta)W%3DR_z(%5Ctheta).%5Ctag%7B10.33%7D

于是,小群变换的一般形式为:

W(%5Calpha%2C%5Cbeta%2C%5Ctheta)%3DT(%5Calpha%2C%5Cbeta)R_z(%5Ctheta).%5Ctag%7B10.34%7D

可以验证:

T(%5Calpha_1%2C%5Cbeta_1)T(%5Calpha_2%2C%5Cbeta_2)%3DT(%5Calpha_1%2B%5Calpha_2%2C%5Cbeta_1%2B%5Cbeta_2).%5Ctag%7B10.35%7D

R_z(%5Ctheta_1)R_z(%5Ctheta_2)%3DR_z(%5Ctheta_1%2B%5Ctheta_2).%5Ctag%7B10.36%7D

从而T(%5Calpha_1%2C%5Cbeta_1)T(%5Calpha_2%2C%5Cbeta_2)%3DT(%5Calpha_2%2C%5Cbeta_2)T(%5Calpha_1%2C%5Cbeta_1)R_z(%5Ctheta_1)R_z(%5Ctheta_2)%3DR_z(%5Ctheta_2)R_z(%5Ctheta_1)。因此%5C%7BT(%5Calpha%2C%5Cbeta)%5C%7D%5C%7BR_z(%5Ctheta)%5C%7D是小群的两个阿贝尔子群。进一步推出:

R_z%5E%7B-1%7D(%5Ctheta)T(%5Calpha%2C%5Cbeta)R_z(%5Ctheta)%3DT(%5Calpha%5Ccos%5Ctheta-%5Cbeta%5Csin%5Ctheta%2C%5Calpha%5Csin%5Ctheta%2B%5Cbeta%5Ccos%5Ctheta).%5Ctag%7B10.37%7D

这意味着T(α,β)在任意小群元素的相似变换下变换到子群{T(α,β)}中的元素,这种情况下,数学上把{T(α,β)}称为小群的不变子群。全体坐标点(α,β)组成一个二维平面,(10.35)表明T(α,β)是平面上的平移变换,(10.36)和(10.37)表明R_z(%5Ctheta)是平面上的旋转变换。这些变换都保持二维欧几里得空间的线元%5Cmathrm%20ds%5E2%3D%5Cmathrm%20d%5Calpha%5E2%2B%5Cmathrm%20d%5Cbeta%5E2不变,因此由他们构成的小群是二维欧几里得空间的等距群ISO(2)。

现在讨论ISO(2)的生成元算符。ISO(2)变换的无穷小形式为%7BW%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta%2C%5Ctheta)%3D%7B%5Cdelta%5E%5Cmu%7D_%5Cnu%2B%7B%5Comega%5E%5Cmu%7D_%5Cnu,其中无穷小参数为:

%7B%5Comega%5E%5Cmu%7D_%5Cnu%3D%5Cbegin%7Bbmatrix%7D0%26%5Calpha%26%5Cbeta%260%5C%5C%5Calpha%260%26%5Ctheta%26-%5Calpha%5C%5C%5Cbeta%26-%5Ctheta%260%26-%5Cbeta%5C%5C0%26%5Calpha%26%5Cbeta%260%5Cend%7Bbmatrix%7D.%5Ctag%7B10.38%7D

容易验证%7B%5Comega%5E%5Cmu%7D_%5Cnu%20k%5E%5Cnu%3D0,因此这样的无穷小变换导致k%5E%5Cmu不变。反对称无穷小参数为:

%5Comega_%7B%5Cmu%5Cnu%7D%3Dg_%7B%5Cmu%5Crho%7D%7B%5Comega%5E%5Crho%7D_%5Cnu%3D%5Cbegin%7Bbmatrix%7D0%26%5Calpha%26%5Cbeta%260%5C%5C-%5Calpha%260%26-%5Ctheta%26%5Calpha%5C%5C-%5Cbeta%26%5Ctheta%260%26%5Cbeta%5C%5C0%26-%5Calpha%26-%5Cbeta%260%5Cend%7Bbmatrix%7D.%5Ctag%7B10.39%7D

%5Calpha%3D-%5Comega_%7B31%7D%3D%5Comega_%7B13%7D%3D%5Comega_%7B01%7D%3D-%5Comega_%7B10%7D%2C%5Cbeta%3D%5Comega_%7B23%7D%3D-%5Comega_%7B32%7D%3D%5Comega_%7B02%7D%3D-%5Comega_%7B20%7D%2C%5Ctheta%3D%5Comega_%7B21%7D%3D-%5Comega_%7B12%7D.%5Ctag%7B10.40%7D

相应的无穷小量子变换为:

%5Cbegin%7Balign%7D%5Chat%20U(%5Cmathbf1%2B%5Comega)%26%3D1-i(%5Comega_%7B31%7D%5Chat%20J%5E%7B31%7D%2B%5Comega_%7B01%7D%5Chat%20J%5E%7B01%7D)-i(%5Comega_%7B23%7D%5Chat%20J%5E%7B23%7D%2B%5Comega_%7B02%7D%5Chat%20J%5E%7B02%7D)-i%5Comega_%7B12%7D%5Chat%20J%5E%7B12%7D%5C%5C%26%3D1%2Bi%5Calpha%5Chat%20A%2Bi%5Cbeta%5Chat%20B%2Bi%5Ctheta%5Chat%20J%5E3.%5Cend%7Balign%7D%5Ctag%7B10.41%7D

其中生成元算符%5Chat%20A%5Chat%20B为:

%5Chat%20A%5Cequiv%5Chat%20J%5E%7B31%7D-%5Chat%20J%5E%7B01%7D%3D%5Chat%20J%5E2-%5Chat%20K%5E1%2C%5Chat%20B%5Cequiv-%5Chat%20J%5E%7B23%7D-%5Chat%20J%5E%7B02%7D%3D-%5Chat%20J%5E1-%5Chat%20K%5E2.%5Ctag%7B10.42%7D

由洛伦兹代数关系推知生成元算符%5Chat%20J%5E3%5Chat%20A%5Chat%20B的对易关系:

%5B%5Chat%20J%5E3%2C%5Chat%20A%5D%3D%5B%5Chat%20J%5E3%2C%5Chat%20J%5E2%5D-%5B%5Chat%20J%5E3%2C%5Chat%20K%5E1%5D%3D-i%5Chat%20J%5E1-i%5Chat%20K%5E2%3Di%5Chat%20B.%5Ctag%7B10.43%7D

%5B%5Chat%20J%5E3%2C%5Chat%20B%5D%3D-%5B%5Chat%20J%5E3%2C%5Chat%20J%5E1%5D-%5B%5Chat%20J%5E3%2C%5Chat%20K%5E2%5D%3D-i%5Chat%20J%5E2%2Bi%5Chat%20K%5E1%3D-i%5Chat%20A.%5Ctag%7B10.44%7D

%5B%5Chat%20A%2C%5Chat%20B%5D%3D-%5B%5Chat%20J%5E2%2C%5Chat%20J%5E1%5D-%5B%5Chat%20J%5E2%2C%5Chat%20K%5E2%5D%2B%5B%5Chat%20K%5E1%2C%5Chat%20J%5E1%5D%2B%5B%5Chat%20K%5E1%2C%5Chat%20K%5E2%5D%3Di%5Chat%20J%5E3-i%5Chat%20J%5E3%3D0.%5Ctag%7B10.45%7D

这与庞加莱代数关系

%5B%5Chat%20J%5E3%2C%5Chat%20P%5E2%5D%3Di%5Chat%20P%5E1%2C%5B%5Chat%20J%5E3%2C%5Chat%20P%5E1%5D%3D-i%5Chat%20P%5E2%2C%5B%5Chat%20P%5E2%2C%5Chat%20P%5E1%5D%3D0%5Ctag%7B10.46%7D

相同,毕竟%5Chat%20J%5E3%5Chat%20P%5E1%5Chat%20P%5E2生成了xy平面的ISO(2)群。

由(10.45)式知道这两个算符对易,因此具有共同本征态%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle,本征值分别为a,b,满足:

%5Chat%20A%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3Da%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%2C%5Chat%20B%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3Db%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.47%7D

小群ISO(2)的量子变换满足同态关系:

%5Chat%20U%5E%7B-1%7D%5BR_z(%5Ctheta)%5D%5Chat%20U%5BT(%5Calpha%2C%5Cbeta)%5D%5Chat%20U%5BR_z(%5Ctheta)%5D%3D%5Chat%20U%5BT(%5Calpha%5Ccos%5Ctheta-%5Cbeta%5Csin%5Ctheta%2C%5Calpha%5Csin%5Ctheta%2B%5Cbeta%5Ccos%5Ctheta)%5D.%5Ctag%7B10.48%7D

将上式展开到无穷小参数的第一阶:

%5Chat%20U%5E%7B-1%7D%5BR_z(%5Ctheta)%5D(1%2Bi%5Calpha%5Chat%20A%2Bi%5Cbeta%5Chat%20B)%5Chat%20U%5BR_z(%5Ctheta)%5D%3D1%2Bi(%5Calpha%5Ccos%5Ctheta-%5Cbeta%5Csin%5Ctheta)%5Chat%20A%2Bi(%5Calpha%5Csin%5Ctheta%2B%5Cbeta%5Ccos%5Ctheta)%5Chat%20B.%5Ctag%7B10.49%7D

由无穷小参数的任意性推出:

%5Chat%20U%5E%7B-1%7D%5BR_z(%5Ctheta)%5D%5Chat%20A%5Chat%20U%5BR_z(%5Ctheta)%5D%3D%5Chat%20A%5Ccos%5Ctheta%2B%5Chat%20B%5Csin%5Ctheta%2C%5Chat%20U%5E%7B-1%7D%5BR_z(%5Ctheta)%5D%5Chat%20B%5Chat%20U%5BR_z(%5Ctheta)%5D%3D-%5Chat%20A%5Csin%5Ctheta%2B%5Chat%20B%5Ccos%5Ctheta.%5Ctag%7B10.50%7D

%5Chat%20A%5Chat%20U%5BR_z(%5Ctheta)%5D%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(%5Chat%20A%5Ccos%5Ctheta%2B%5Chat%20B%5Csin%5Ctheta)%2C%5Chat%20B%5Chat%20U%5BR_z(%5Ctheta)%5D%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(-%5Chat%20A%5Csin%5Ctheta%2B%5Chat%20B%5Ccos%5Ctheta).%5Ctag%7B10.51%7D

那么,态矢%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U%5BR_z(%5Ctheta)%5D%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%5Chat%20A%2C%5Chat%20B的共同本征态:

%5Cbegin%7Balign%7D%5Chat%20A%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle%26%3D%5Chat%20A%5Chat%20U%5BR_z(%5Ctheta)%5D%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(%5Chat%20A%5Ccos%5Ctheta%2B%5Chat%20B%5Csin%5Ctheta)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%5C%5C%26%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(a%5Ccos%5Ctheta%2Bb%5Csin%5Ctheta)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3D(a%5Ccos%5Ctheta%2Bb%5Csin%5Ctheta)%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.52%7D

%5Cbegin%7Balign%7D%5Chat%20B%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle%26%3D%5Chat%20B%5Chat%20U%5BR_z(%5Ctheta)%5D%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(-%5Chat%20A%5Csin%5Ctheta%2B%5Chat%20B%5Ccos%5Ctheta)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%5C%5C%26%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(-a%5Csin%5Ctheta%2Bb%5Ccos%5Ctheta)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3D(-a%5Csin%5Ctheta%2Bb%5Ccos%5Ctheta)%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.53%7D

当a,b固定时,由于转动角θ取连续值,本征值acosθ+bsinθ和-asinθ+bcosθ也是连续的,因此,只要a和b不全为零,就有一系列连续的本征态%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle,但是,我们没有观测到无质量粒子具有以转动角θ作为连续自由度的物理态。因此,自然界中的物理态是a=b=0的本征态,只由小群生成元算符%5Chat%20J%5E3的本征值σ标记,记作%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle,满足:

%5Chat%20A%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3D0%2C%5Chat%20B%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3D0%2C%5Chat%20J%5E3%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3D%5Csigma%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.54%7D

对于单粒子态%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%5Chat%7B%5Cmathbf%20J%7D是自旋角动量算符。标准四维动量k%5E%5Cmu%3D(%5Ckappa%2C0%2C0%2C%5Ckappa)的空间分量k沿着z轴方向,因而σ是自旋角动量在动量方向的投影本征值,称为螺旋度。

无穷小量子变换(10.41)表明:

%5Cfrac%7B%5Cpartial%5Chat%20U%5BT(%5Calpha%2C%5Cbeta)%5D%7D%7B%5Cpartial%5Calpha%7D%5Cbigg%7C_%7B%5Calpha%3D%5Cbeta%3D0%7D%3Di%5Chat%20A%2C%5Cfrac%7B%5Cpartial%5Chat%20U%5BT(%5Calpha%2C%5Cbeta)%5D%7D%7B%5Cpartial%5Cbeta%7D%5Cbigg%7C_%7B%5Calpha%3D%5Cbeta%3D0%7D%3Di%5Chat%20B%2C%5Cfrac%7B%5Cmathrm%20d%5Chat%20U%5BR_z(%5Ctheta)%5D%7D%7B%5Cmathrm%20d%5Ctheta%7D%5Cbigg%7C_%7B%5Ctheta%3D0%7D%3Di%5Chat%20J%5E3.%5Ctag%7B10.55%7D

由此求得:

%5Chat%20U%5BT(%5Calpha%2C%5Cbeta)%5D%3De%5E%7Bi%5Calpha%5Chat%20A%2Bi%5Cbeta%5Chat%20B%7D%2C%5Chat%20U%5BR_z(%5Ctheta)%5D%3De%5E%7Bi%5Ctheta%5Chat%20J%5E3%7D.%5Ctag%7B10.56%7D

由此求得一般的小群变换(10.34)为:

%5Chat%20U%5BW(%5Calpha%2C%5Cbeta%2C%5Ctheta)%5D%3De%5E%7Bi%5Calpha%5Chat%20A%2Bi%5Cbeta%5Chat%20B%2Bi%5Ctheta%5Chat%20J%5E3%7D.%5Ctag%7B10.57%7D

作用到单粒子态%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle上,得到:

%5Chat%20U%5BW(%5Calpha%2C%5Cbeta%2C%5Ctheta)%5D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3De%5E%7Bi%5Csigma%5Ctheta%7D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.58%7D

代入(10.11)式得:

D_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W)%3De%5E%7Bi%5Csigma%5Ctheta%7D%5Cdelta_%7B%5Csigma%5E%5Cprime%5Csigma%7D.%5Ctag%7B10.59%7D

另一方面,(10.9)式化为:

V%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%3DW%3DT%5B%5Calpha(%5CLambda%2Cp)%2C%5Cbeta(%5CLambda%2Cp)%5DR_z%5B%5Ctheta(%5CLambda%2Cp)%5D.%5Ctag%7B10.60%7D

这个关系决定了θ依赖于%7B%5CLambda%5E%5Cmu%7D_%5Cnup%5E%5Cmu的关系。根据(10.16)式,得到:

%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3D%5Cfrac%7BN(p)%7D%7BN(%5CLambda%20p)%7De%5E%7Bi%5Csigma%5Ctheta(%5CLambda%2Cp)%7D%7C%5CPsi_%5Csigma(%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.61%7D

这个式子表明%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle与经过量子洛伦兹变换之后的态%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle具有相同的σ,也就是说,量子洛伦兹变换不会混合具有不同螺旋度的无质量粒子态。这意味着,对无质量粒子来说,螺旋度σ是固有保时向洛伦兹变换的不变量,在所有惯性系中取值相同。因此,无质量粒子可根据螺旋度σ的值分类。

前面提到,固有保时向洛伦兹群SO%5E%5Cuparrow(1%2C3)是群空间是双连通的,与SO(3)的情况类似,群空间内从恒元出发、经过%5CLambda_1和 %5CLambda_2%5CLambda_1再回到恒元的闭合曲线分为两类,一类能连续收缩成恒元一点,另一类不能。可以推出类似(10.23)式的关系:

%5Chat%20U(%5CLambda_2)%5Chat%20U(%5CLambda_1)%3D%5Cpm%5Chat%20U(%5CLambda_2%5CLambda_1).%5Ctag%7B10.62%7D

对于无质量粒子,(10.61)式表明,相位因子±1起源于绕z轴转动角度θ=2π引起的e%5E%7B2%5Cpi%20i%5Csigma%7D因子,即:

e%5E%7B2%5Cpi%20i%5Csigma%7D%3D%5Cpm%201.%5Ctag%7B10.63%7D

这个条件限制了无质量粒子螺旋度的取值,要求:

%5Csigma%3D0%2C%5Cpm%5Cfrac12%2C%5Cpm1%2C%5Cpm%5Cfrac32%2C%5Cpm2%2C%E2%80%A6%5Ctag%7B10.64%7D

σ为整数对应于SO%5E%5Cuparrow(1%2C3)的线性表示,σ为半奇数对应于SO%5E%5Cuparrow(1%2C3)的双值表示。由于螺旋度是自旋角动量在动量方向上的投影,无质量粒子自旋量子数可取:

s%3D%7C%5Csigma%7C%3D0%2C%5Cfrac12%2C1%2C%5Cfrac32%2C2%2C%E2%80%A6%5Ctag%7B10.65%7D

与有质量粒子的取值情况一样。

于是,自旋为 s 的无质量粒子具有 2 种自旋极化态,对应于两种螺旋度σ = ±s。如果没有额外的条件,可以把 s 相同而σ不同的两个无质量粒子当作不同的粒子对待。不过,额外的条件是存在的。宇称变换会改变 σ 的符号,而电磁相互作用、强相互作用和引力相互作用都保持宇称守恒,如果无质量粒子不具有破坏宇称的相互作用,则螺旋度相反的两种粒子具有相同的相互作用行为。从而,可以把它们当作同一种粒子的两种自由度。比如,作为电磁场的量子,光子是自旋为 1 的无质量粒子,具有-1和+1两种螺旋度,分别对应于真空电磁波的左旋圆极化和右旋圆极化。假想的引力子是自旋为2的无质量粒子,具有-2和+2两种螺旋度。在标准模型中,自旋为%5Cfrac12的中微子没有质量,参与破坏宇称的弱相互作用,因而可以把螺旋度相反的两种中微子当作两种粒子,螺旋度为-%5Cfrac12的是狭义的中微子,螺旋度为%2B%5Cfrac12的称为反中微子。

(3)真空:p%5E%5Cmu%3D(0%2C0%2C0%2C0)

此时取k%5E%5Cmu%3D(0%2C0%2C0%2C0),它在任意洛伦兹变换下不变,相应的小群是固有保时向洛伦兹群 SO%5E%5Cuparrow(1%2C3)


量子场论(十一):时空中的粒子(二)的评论 (共 条)

分享到微博请遵守国家法律