欢迎光临散文网 会员登陆 & 注册

『初中可看』一元三次方程通解推导

2022-07-24 06:37 作者:げいしも_芸  | 我要投稿

%E6%88%91%E4%BB%AC%E5%AD%A6%E8%BF%87%EF%BC%9A

%E5%85%B3%E4%BA%8Ex%E7%9A%84%E4%B8%80%E5%85%83%E4%BA%8C%E6%AC%A1%E6%96%B9%E7%A8%8Bax%5E2%2Bbx%2Bc%3D0(a%E2%89%A00)%EF%BC%8C

%E5%85%B6%E9%80%9A%E8%A7%A3%E4%B8%BA%EF%BC%9Ax%3D%5Cfrac%7B-b%5Cpm%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D

那一元三次方程呢?

%E5%AF%B9%E4%BA%8E%E4%B8%80%E4%B8%AA%E6%99%AE%E9%80%9A%E7%9A%84%E4%B8%80%E5%85%83%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B%EF%BC%9A

ax%5E3%2Bbx%5E2%2Bcx%2Bd%3D0(a%5Cneq%200)

我们先将最高次项的系数化为1.

%E4%BB%A4B%3D%5Cfrac%20ba%2CC%3D%5Cfrac%20ca%2CD%3D%5Cfrac%20da

%E5%88%99%E6%9C%89%EF%BC%9Ax%5E3%2BBx%5E2%2BCx%2BD%3D0

下一步的目标是消掉二次项.

%E4%BB%A4x%3Dz%2Bt%EF%BC%8C%E4%BB%A3%E5%85%A5%E5%90%8E%E5%B1%95%E5%BC%80%E5%BE%97%E5%88%B0%EF%BC%9A

(z%5E3%2B3z%5E2t%2B3zt%5E2%2Bt%5E3)%2BB(z%5E2%2B2zt%2Bt%5E2)%2BC(z%2Bt)%2BD%3D0

z%5E3%2B(3t%2BB)z%5E2%2B(3t%5E2%2B2Bt%2BC)z%2B(t%5E3%2BBt%5E2%2BCt%2BD)%3D0%E5%9B%A0%E6%AD%A4t%3D-%5Cfrac%20B3

%E6%9C%89%EF%BC%9Az%5E3%2B(-%5Cfrac%20%7BB%5E2%7D3%2BC)z%2B(%5Cfrac%7B2B%5E3%7D%7B27%7D-%5Cfrac%7BBC%7D3%2BD)%3D0

%E4%B8%BA%E4%BA%86%E7%AE%80%E5%8C%96%E8%AE%A1%E7%AE%97%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BB%A4p%3D-%5Cfrac%20%7BB%5E2%7D3%2BC%2Cq%3D%5Cfrac%7B2B%5E3%7D%7B27%7D-%5Cfrac%7BBC%7D3%2BD

%E4%BA%8E%E6%98%AFz%5E3%2Bpz%2Bq%3D0

%E8%BF%99%E6%97%B6%E5%86%8D%E4%BB%A4z%3Du%2Bv%EF%BC%8C%E9%83%A8%E5%88%86%E5%B1%95%E5%BC%80%E5%BE%97%E5%88%B0%EF%BC%9A

u%5E3%2B3u%5E2v%2B3uv%5E2%2Bv%5E3%2Bp(u%2Bv)%2Bq%3D0

%E6%95%B4%E7%90%86%E5%BE%97%E5%88%B0%EF%BC%9A

(u%5E3%2Bv%5E3)%2B(3uv%2Bp)(u%2Bv)%2Bq%3D0

由于u、v是我们随便设的两个变量,因此我们可以让u、v同时满足两个条件,以此解出u、v.

注意到:若令3uv%2Bp%3D0,则可以使方程的形式简单许多,于是可以得到:

u%5E3%2Bv%5E3%3D-q%2Cuv%3D-%5Cfrac%20p3

%E5%8D%B3%EF%BC%9Au%5E3%2Bv%5E3%3D-q%2Cu%5E3v%5E3%3D-%5Cfrac%7Bp%5E3%7D%7B27%7D

由此不难联想到韦达定理.

%E4%BB%A4U%3Du%5E3%2CV%3Dv%5E3

%E5%88%99U%E3%80%81V%E6%98%AF%E6%96%B9%E7%A8%8Br%5E2%2Bqr-%5Cfrac%7Bp%5E3%7D%7B27%7D%E7%9A%84%E4%B8%A4%E4%B8%AA%E4%B8%8D%E5%90%8C%E7%9A%84%E6%A0%B9

%E8%A7%A3%E4%B9%8B%EF%BC%8C%E5%BE%97%E5%88%B0%EF%BC%9A

U%3D%5Cfrac%20%7B-q%2B%5Csqrt%7Bq%5E2%2B%5Cfrac%7B4p%5E3%7D%7B27%7D%7D%7D%7B2%7D%EF%BC%8CV%3D%5Cfrac%20%7B-q-%5Csqrt%7Bq%5E2%2B%5Cfrac%7B4p%5E3%7D%7B27%7D%7D%7D%7B2%7D

而这个一元二次方程的判别式:

%5CDelta%3Dq%5E2%2B%5Cfrac%7B4p%5E3%7D%7B27%7D

%E6%89%80%E4%BB%A5u%3D%5Csqrt%5B3%5D%7B%5Cfrac%20%7B-q%2B%5Csqrt%7Bq%5E2%2B%5Cfrac%7B4p%5E3%7D%7B27%7D%7D%7D%7B2%7D%7D%2Cv%3D%5Csqrt%5B3%5D%7B%5Cfrac%20%7B-q-%5Csqrt%7Bq%5E2%2B%5Cfrac%7B4p%5E3%7D%7B27%7D%7D%7D%7B2%7D%7D

于是我们得到一个解:

x_1%3D-%5Cfrac%20B3%2Bz_1%EF%BC%8Cz_1%3Du%2Bv

这是Δ≥0的情况.

那当Δ<0时呢?难道这个方程无解吗?

观察任意一个三次函数:

f(x)%3Dax%5E3%2Bbx%5E2%2Bcx%2Bd的图像,我们会发现:

无论a,b,c,d取何值,f(x)总会穿过x轴,也就是f(x)至少有一个解,这时我们不得不直面负数开方这一问题,好在数学家们早已铺好了前路.

我们定义这样一个数i,使得其满足:i%5E2%3D-1%EF%BC%8C%E5%8D%B3%5Csqrt%7B-1%7D%3Di

这样即使Δ<0,我们也能将%5Csqrt%5CDelta变为%5Csqrt%7B-%5Cvert%20%5CDelta%20%5Cvert%20%7D,而在后续的计算中消掉i,得到对应的实数解.

到此为止,有一个问题我们没有解决,根据代数基本定理的推论:

n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)

也就是说一元三次方程应该有3个根(重根按重数计算)

那另外的两个根呢?

%E8%80%83%E8%99%91%E4%B8%80%E4%B8%AA%E7%AE%80%E5%8D%95%E7%9A%84%E4%B8%80%E5%85%83%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B%EF%BC%9A%5Comega%20%5E3-1%3D0

%E5%88%A9%E7%94%A8%E7%AB%8B%E6%96%B9%E5%B7%AE%E5%85%AC%E5%BC%8F%E5%B1%95%E5%BC%80%E5%BE%97%E5%88%B0%EF%BC%9A(%5Comega%20-1)(%5Comega%5E2%2B%5Comega%20%2B1)%3D0

得到三个解:

%5Comega_1%3D1%EF%BC%8C%5Comega_2%3D%5Cfrac%7B-1%2B%5Csqrt%203i%7D2%EF%BC%8C%5Comega_3%3D%5Cfrac%7B-1-%5Csqrt%203i%7D2

%E5%AE%83%E4%BB%AC%E9%83%BD%E7%AC%A6%E5%90%88%5Comega%5E3%3D1

于是我们可以将u、v分别乘上ω_2和ω_3而不影响U、V的值.

(注:为了保证uv%3D-%5Cfrac%20p3,u、v不能同时乘上ω_2或ω_3.)

%E6%89%80%E4%BB%A5z_2%3Du%5Comega_2%2Bv%5Comega_3%EF%BC%8Cz_3%3Du%5Comega_3%2Bv%5Comega_2

%E8%80%8Cx_2%3Dz_2-%5Cfrac%20B3%EF%BC%8Cx_3%3Dz_3-%5Cfrac%20B3

至此,我们已经解完了一般形式的一元三次方程,当然你也可以将a,b,c,d代入,得到其通解,不过这个公式已经过于冗长,并没有去记的意义.



『初中可看』一元三次方程通解推导的评论 (共 条)

分享到微博请遵守国家法律