欢迎光临散文网 会员登陆 & 注册

复旦大学谢启鸿高等代数习题课ep.29-30练习题九解析几何问题的再探究

2021-12-13 20:58 作者:CharlesMa0606  | 我要投稿

本文内容主要有关于复旦大学谢启鸿高等代数习题课ep.29-30练习题九的解析几何问题

习题课视频链接:复旦大学谢启鸿高等代数习题课_哔哩哔哩_bilibili

题目来自于复旦大学谢启鸿教授在本站高等代数习题课的课后思考题,本文仅供学习交流

首先给出原题和原来的证明

原题、原来的证明

感谢网友@雨不大不打伞 提出的问题:为什么系数矩阵的秩就是5了呢?于是我重新审视这道题,发现并没有我原来想象得那么简单,这个系数矩阵的行之间、列之间的关系比较复杂,并不是一句话就能带过的,因此我对这个问题进行了重新探索,下面给出更加严格的证明.

证明    设二次曲线为ax%5E2%2Bbxy%2Bcy%5E2%2Bdx%2Bey%2Bf%3D0,对坐标系进行适当旋转,使得x_i各不相同从而可以如下线性方程组:

%5Cleft(%5Cast%5Cright)%5Cleft%5C%7B%5Cbegin%7Bmatrix%7Dax_1%5E2%2Bbx_1y_1%2Bcy_1%5E2%2Bdx_1%2Bey_1%2Bf%3D0%5C%5Cax_2%5E2%2Bbx_2y_2%2Bcy_2%5E2%2Bdx_2%2Bey_2%2Bf%3D0%5C%5Cax_3%5E2%2Bbx_3y_3%2Bcy_3%5E2%2Bdx_3%2Bey_3%2Bf%3D0%5C%5Cax_4%5E2%2Bbx_4y_4%2Bcy_4%5E2%2Bdx_4%2Bey_4%2Bf%3D0%5C%5Cax_5%5E2%2Bbx_5y_5%2Bcy_5%5E2%2Bdx_5%2Bey_5%2Bf%3D0%5C%5C%5Cend%7Bmatrix%7D%5Cright.

注意到存在二次曲线ax%5E2%2Bbxy%2Bcy%5E2%2Bdx%2Bey%2Bf%3D0经过这五个点当且仅当上述方程组%5Cleft(%5Cast%5Cright)有非零解,而由系数矩阵不可能列满秩可得解空间维数大于等于1,也即一定有非零解,这就说明了一定存在二次曲线通过这5个点.

要证这条曲线唯一,只需要证明线性方程组%5Cleft(%5Cast%5Cright)的系数矩阵的秩为5.

由任意4个点不共线可得%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime线性无关. 

下面我们证明系数矩阵A的秩不能小于5,设系数矩阵的秩小于5,则:

讨论%5Cleft(x_1%5E2%2Cx_2%5E2%2C%5Ccdots%2Cx_5%5E2%5Cright)%5E%5Cprime%2C%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime四列的线性无关性,若它们线性相关,则由%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime线性无关可知y_i是关于x_i的二次函数,考虑1%2Cx_i%2Cx_i%5E2%2Cx_iy_i%2Cy_i%5E2五列构成的子式,则这是一个范德蒙矩阵且各行代表元素不同,从而行列式的值非零,由矩阵秩的子式判别法可知系数矩阵的秩为5,得到矛盾.于是%5Cleft(x_1%5E2%2Cx_2%5E2%2C%5Ccdots%2Cx_5%5E2%5Cright)%5E%5Cprime%2C%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime线性无关,注意到矩阵的秩小于等于4,从而它们是A的列向量的极大无关组,并且可设x_iy_i%3Dp_1x_i%5E2%2Bq_1x_i%2Br_1y_i%2Bt_1%2Cy_i%5E2%3Dp_2x_i%5E2%2Bq_2x_i%2Br_2y_i%2Bt_2.%20

1°存在某个x_i%3Dr_1,则有p_1r_1%5E2%2Bq_1x_i%5E2%2Bt_1%3D0%2Cy_i%5E2%3Dp_2r_1%5E2%2Bq_2r_1%2Br_2y_i%2Bt_2

2°对x_i%5Cneq%20r_1,变形得到:

y_i%3D%5Cfrac%7Bp_1x_i%5E2%2Bq_1x_i%2Bt_1%7D%7Bx_i-r_1%7D

代入得

%5Cleft(%5Cfrac%7Bp_1x_i%5E2%2Bq_1x_i%2Bt_1%7D%7Bx_i-r_1%7D%5Cright)%5E2%3Dp_2x_i%5E2%2Bq_2x_i%2Br_2%5Cfrac%7Bp_1x_i%5E2%2Bq_1x_i%2Bt_1%7D%7Bx_i-r_1%7D%2Bt_2

去分母,有:

%5Cleft(p_1x_i%5E2%2Bq_1x_i%2Bt_1%5Cright)%5E2%3D%5Cleft(p_2x_i%5E2%2Bq_2x_i%2Bt_2%5Cright)%5Cleft(x_i-r_1%5Cright)%2Br_2%5Cleft(p_1x_i%5E2%2Bq_1x_i%2Bt_1%5Cright)%5Cleft(x_i-r_1%5Cright)

这是一个关于x_i的四次方程,并且若存在某个x_i%3Dr_1,则它一定适合上述四次方程,并且是上述四次方程增根,若不存在x_i%3Dr_1,注意到四次方程最多只有四个根,从而仍然最多只存在4个不同的x_i.但是根据我们的假设,五个x_i各不相同,于是矛盾.

这意味着当系数矩阵A的秩小于5时,%5Cleft(x_1%5E2%2Cx_2%5E2%2C%5Ccdots%2Cx_5%5E2%5Cright)%5E%5Cprime%2C%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime既不可以线性相关,又不可以线性无关,这说明系数矩阵的秩只能等于5. 这样就证明了这样的圆锥曲线是唯一的.

%5BQ.E.D%5D

注    本题应当还有基于解析几何相关理论的证明,这里不再赘述.

致谢    感谢复旦大学数学科学学院谢启鸿教授对我重新写出的证法给出的优化建议

复旦大学谢启鸿高等代数习题课ep.29-30练习题九解析几何问题的再探究的评论 (共 条)

分享到微博请遵守国家法律