欢迎光临散文网 会员登陆 & 注册

必要条件探路(2020新高考Ⅰ&Ⅱ导数)

2022-10-17 10:56 作者:数学老顽童  | 我要投稿

(2020新高考Ⅰ,21;新高考Ⅱ,22)已知函数f%5Cleft(%20x%20%5Cright)%20%3Da%5Cmathrm%7Be%7D%5E%7Bx-1%7D-%5Cln%20%20x%2B%5Cln%20%20a.

(1)当a%3D%5Cmathrm%7Be%7D时,求曲线y%3Df%5Cleft(%20x%20%5Cright)%20在点%5Cleft(%201%2Cf%5Cleft(%201%20%5Cright)%20%5Cright)%20处的切线与坐标轴围成的三角形的面积;

(2)若f%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%201,求a的取值范围.

解:(1)当a%3D%5Cmathrm%7Be%7D时,

f%5Cleft(%20x%20%5Cright)%20%3D%5Cmathrm%7Be%7D%5Ex-%5Cln%20%20x%2B1

f%5Cleft(%201%20%5Cright)%20%3D%5Cmathrm%7Be%7D%2B1,故切点坐标为%5Ccolor%7Bred%7D%7B%5Cleft(%201%2C%5Cmathrm%7Be%7D%2B1%20%5Cright)%20%7D

f'%5Cleft(%20x%20%5Cright)%20%3D%5Cmathrm%7Be%7D%5Ex-%5Cfrac%7B1%7D%7Bx%7D

故切线斜率为f'%5Cleft(%201%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B%5Cmathrm%7Be%7D-1%7D

故切线方程为

y-%5Cleft(%20%5Cmathrm%7Be%7D%2B1%20%5Cright)%20%3D%5Cleft(%20%5Cmathrm%7Be%7D-1%20%5Cright)%20%5Cleft(%20x-1%20%5Cright)%20

整理得%5Ccolor%7Bred%7D%7By%3D%5Cleft(%20%5Cmathrm%7Be%7D-1%20%5Cright)%20x%2B2%7D.

x%3D0,得y%3D2

y%3D0,得x%3D%5Cfrac%7B2%7D%7B1-%5Cmathrm%7Be%7D%7D

故所求三角形得面积

%5Ccolor%7Bred%7D%7BS_%7B%5Cbigtriangleup%7D%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cleft%7C%202%20%5Cright%7C%5Ctimes%20%5Cleft%7C%20%5Cfrac%7B2%7D%7B1-%5Cmathrm%7Be%7D%7D%20%5Cright%7C%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B2%7D%7B%5Cmathrm%7Be%7D-1%7D%7D.

(2)%5Ccolor%7Bred%7D%7Bf%5Cleft(%201%20%5Cright)%7D%20%3Da%2B%5Cln%20%20a%5Cgeqslant1

g%5Cleft(%20a%20%5Cright)%20%3Da%2B%5Cln%20%20a

易知g%5Cleft(%20a%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D,且注意到%5Ccolor%7Bred%7D%7Bg%5Cleft(%201%20%5Cright)%20%3D1%7D,所以

a%5Cgeqslant1g%5Cleft(%20a%20%5Cright)%20%5Cgeqslant1

所以a%5Cgeqslant%201f%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%201必要条件.

下面证明:a%5Cgeqslant%201f%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%201充分条件.

a%5Cgeqslant%201时,f%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%20%5Cmathrm%7Be%7D%5E%7Bx-1%7D-%5Cln%20%20x

故只需证%5Ccolor%7Bred%7D%7B%5Cmathrm%7Be%7D%5E%7Bx-1%7D-%5Cln%20%20x%5Cgeqslant%201%7D.

h%5Cleft(%20x%20%5Cright)%20%3D%5Cmathrm%7Be%7D%5E%7Bx-1%7D-%5Cln%20%20x

h'%5Cleft(%20x%20%5Cright)%20%3D%5Cmathrm%7Be%7D%5E%7Bx-1%7D-%5Cfrac%7B1%7D%7Bx%7D

易知h'%5Cleft(%20x%20%5Cright)%20%5Cnearrow%20,且注意到h'%5Cleft(%201%20%5Cright)%20%3D0,所以

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%200%2C1%20%5Cright)%20%7Dh'%5Cleft(%20x%20%5Cright)%20%3C0h%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Csearrow%20%7D

x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%201%2C%2B%5Cinfty%20%5Cright)%7D%20h'%5Cleft(%20x%20%5Cright)%20%3E0h%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D

h%5Cleft(%20x%20%5Cright)%20%5Cgeqslant%20h%5Cleft(%20x%20%5Cright)%20_%7B%5Cmin%7D%3Dh%5Cleft(%201%20%5Cright)%20%3D1,证毕.

综上所述:%5Ccolor%7Bred%7D%7Ba%5Cin%20%5Cleft%5B%201%2C%2B%5Cinfty%20%5Cright)%20%7D.

命题背景:%5Ccolor%7Bred%7D%7B%5Cmathrm%7Be%7D%5E%7Bx-1%7D%5Cgeqslant%20%5Cln%20%20x%2B1%7D.


必要条件探路(2020新高考Ⅰ&Ⅱ导数)的评论 (共 条)

分享到微博请遵守国家法律