欢迎光临散文网 会员登陆 & 注册

无穷乘积——Weierstrass分解定理

2021-12-15 23:35 作者:子瞻Louis  | 我要投稿

无穷乘积

形如%5Cprod_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20(1%2Bu_n)的式子称为无穷乘积,其中%5Cleft%5C%7Bu_n%5Cright%5C%7D为一复数项或函数项序列,且u_n%E2%89%A0-1

易知其收敛的必要条件u_n%5Crightarrow0, 而充要条件%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cln%20(1%2Bu_n)收敛,

(引理)u_1%2Cu_2%2C%E2%80%A6是复数序列,若

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cvert%20u_n%5Cvert%20%EF%BC%9C%5Cinfty

%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cvert1%2Bu_n%5Cvert%EF%BC%9C%5Cinfty

证明 有经典的不等式1%2Bx%5Cleq%20e%5Ex,于是1%2B%5Cvert%20u_n%5Cvert%5Cleq%20e%5E%7B%5Cvert%20u_n%5Cvert%7D,即

%5Cprod_%7Bn%3D1%7D%5E%5Cinfty(1%2B%5Cvert%20u_n%5Cvert)%5Cleq%20e%5E%7B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cvert%20u_n%5Cvert%7D

又有%5Cvert%20a%2Bb%5Cvert%20%5Cleq%5Cvert%20a%5Cvert%2B%5Cvert%20b%5Cvert,于是%5Cvert%201%2Bu_n%5Cvert%5Cleq1%2B%5Cvert%20u_n%5Cvert,即

%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cvert1%2Bu_n%5Cvert%5Cleq%5Cprod_%7Bn%3D1%7D%5E%5Cinfty(1%2B%5Cvert%20u_n%5Cvert)%5Cleq%20e%5E%7B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cvert%20u_n%5Cvert%7D

%5Csquare

(推论)u_1(z)%2Cu_2(z)%2C%E2%80%A6为区域D的解析函数项序列,若

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cvert%20u_n(z)%5Cvert%20%EF%BC%9C%5Cinfty

%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cvert1%2Bu_n(z)%5Cvert%EF%BC%9C%5Cinfty

◀ 这是因为在区域 D 内它们都是有界的%5Csquare

设一复数序列%5Cvert%20a_1%5Cvert%5Cleq%5Cvert%20a_2%5Cvert%20%5Cleq%E2%80%A6%2C%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac1%7B%5Cvert%20a_n%5Cvert%7D%3D0,我们将要用这个序列构造一个以且仅以他们为零点的全纯函数,

首先,需要构造一些能够表述它零点的因式,对此给出一下定义:

E_0(z)%3D(1-z)%2C

E_k(z)%3D(1-z)e%5E%7Bz%2B%5Cfrac12z%5E2%2B%E2%80%A6%2B%5Cfrac1kz%5Ek%7D%2Cn%3D1%2C2%2C%E2%80%A6

称它们为基本因式,下面就要用他们来做一些奇妙的事情

易知它们在复平面内解析且仅以 z=1为零点,设

F(z)%3Dz%5Em%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)

其中 m%3Dm(F(z)%3B0) 为 F(z) 在 z%3D0 处的零点阶数(若 F(0)%E2%89%A00,则 m%3D0 )

我们猜测这是个整函数(整个复平面上都全纯的函数)且仅以z_1%2Cz_2%2C%E2%80%A6为零点(若 z_r 在当中出现了m次,则 z_r 是 F(z) 的m重零点)

若我们能证明%5Cprod_%7Bn%3Dr%7D%5E%5Cinfty%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)%5Cvert%20z%5Cvert%20%5Cleq%5Cvert%20z_r%5Cvert内一致收敛到整函数,因%5Cvert%20z_r%5Cvert%5Crightarrow%5Cinfty,则证明我们的猜想是正确的,因此当务之急是确定k,

(引理)当 %5Cvert%20z%5Cvert%20%5Cleq1 时,

%5Cvert%20E_k%5Cleft(z%5Cright)-1%5Cvert%5Cleq%20%5Cvert%20z%5Cvert%5E%7Bk%2B1%7D

证明 当k=0时,%5Cvert%201-(1-z)%5Cvert%5Cleq%5Cvert%20z%5Cvert成立,当k≥1时,

E_k(z)取导数,有

E_k'(z)%3Dz%5Eke%5E%7Bz%2B%5Cfrac12z%5E2%2B%E2%80%A6%2B%5Cfrac1kz%5Ek%7D

易知仅有z=0为其零点且重数为k,又有

E_k(z)-1%3D%5Cint_0%5Ez%20E_k%E2%80%99(s)ds

对 E_k'(z) 积分使得它在z=0处的重数加1,即 E_k(z)-1 在z=0处有k+1重零点,因此

%5Cphi(z)%3A%3D%5Cfrac%7BE_k(z)-1%7D%7Bz%5E%7Bk%2B1%7D%7D

全纯函数,即

%5Cphi(z)%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20a_nz%5En

并且其中所有 a_n%5Cge1 ,因此对 %5Cvert%20z%5Cvert%5Cleq1,有 %7C%5Cphi(z)%7C%5Cle%5Cphi(1)%3D1 ,即 

%7CE_k(z)-1%7C%5Cle%20%7Cz%5E%7Bk%2B1%7D%7C

%5Csquare

由上可知若正整数k使得

%5Csum_%7Bn%3Dr%7D%5E%5Cinfty%20%5Cfrac%7B%5Cvert%20z%5Cvert%5E%7Bk%2B1%7D%7D%7B%5Cvert%20z_n%5Cvert%5E%7Bk%2B1%7D%7D%3C%5Cinfty 在 %5Cvert%20z%5Cvert%5Cleq%5Cvert%20z_r%5Cvert内成立,则

%5Csum_%7Bn%3Dr%7D%5E%5Cinfty%20%5Cleft%7C%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)-1%5Cright%7C%5Cle%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cleft%7C%5Cfrac%7Bz%7D%7Bz_n%7D%5Cright%7C%5E%7Bk%2B1%7D%3C%5Cinfty

由前面的引理,可知

%5Cprod_%7Bn%3Dr%7D%5E%5Cinfty%20%5Cleft%7C%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)%5Cright%7C%3C%5Cinfty

因为 %5Cvert%20z_r%5Cvert%5Crightarrow%5Cinfty ,所以我们得到:若正整数k满足

 %5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac1%7B%5Cvert%20z_n%5Cvert%5E%7Bk%2B1%7D%7D%3C%5Cinfty


F(z)%3D%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)

定义了一个仅以 z_1%2Cz_2%2C%E2%80%A6 为零点的整函数

进一步,可以得到:

(Weierstrass分解定理)设 F(z) 是整函数,其零点为 z_1%2Cz_2%2C%E2%80%A6 ,则它有一下无穷乘积展开:

F(z)%3De%5E%7BH(z)%7Dz%5Em%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)

其中 H(z) 是一整函数,m是z=0处的零点重数

◀ 因为 F(z) 是整函数,所以存在整函数 G(z) 由一无穷乘积给定且以 F(z) 的零点为零点,若

P(z)%3D%5Cfrac%7BF(z)%7D%7BG(z)%7D

因为 P(z) 的分子分母在在零点处可以相抵,所以 P(z) 是无零点的整函数,即 P(z) 的对数是整函数,也就是是存在整函数 H(z) ,使

P(z)%3De%5E%7BH(z)%7D

所以 F(z)%3De%5E%7BH(z)%7DG(z)

%5Csquare

正弦函数的Weierstrass乘积分解

这个问题就是欧拉(Leonhard Euler)的成名作:

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac1%7Bn%5E2%7D%3D%5Cfrac%7B%5Cpi%5E2%7D6

前面我已经用Poison求和公式给出了一个证明,今天来看一看欧拉的方法吧

他最开始给出了一个非常巧妙的证明,首先他注意到了

%5Csin%20x%3Dx-%5Cfrac1%7B3!%7Dx%5E3%2B%5Cfrac1%7B5!%7Dx%5E5-%E2%80%A6

为 %5Csin%20x 在零点的Taylor展开,

因为 %5Csin%20x 的零点为 0%2C%5Cpm%20%5Cpi%2C%5Cpm%202%5Cpi%2C%5Cpm%203%5Cpi%2C%E2%80%A6

于是

%5Csin%20x%3Dcx%5Cleft(1-%5Cfrac%20x%7B%5Cpi%7D%5Cright)%5Cleft(1%2B%5Cfrac%20x%7B%5Cpi%7D%5Cright)%5Cleft(1-%5Cfrac%20x%7B2%5Cpi%7D%5Cright)%5Cleft(1%2B%5Cfrac%20x%7B2%5Cpi%7D%5Cright)%5Cleft(1-%5Cfrac%20x%7B3%5Cpi%7D%5Cright)%5Cleft(1%2B%5Cfrac%20x%7B3%5Cpi%7D%5Cright)%E2%80%A6

           %3Dcx%5Cleft(1-%5Cfrac%20%7Bx%5E2%7D%7B%5Cpi%5E2%7D%5Cright)%5Cleft(1-%5Cfrac%20%7Bx%5E2%7D%7B4%5Cpi%5E2%7D%5Cright)%5Cleft(1-%5Cfrac%20%7Bx%5E2%7D%7B9%5Cpi%5E2%7D%5Cright)%E2%80%A6

将这个无穷乘积展开,根据 %5Csin%20x 的Taylor展开中的一次项系数可确定c=1,并且

%5Csin%20x%3Dx-%5Cleft(%5Cfrac1%7B%5Cpi%5E2%7D%2B%5Cfrac1%7B2%5E2%5Cpi%5E2%7D%2B%5Cfrac1%7B3%5E2%5Cpi%5E2%7D%2B%E2%80%A6%5Cright)x%5E3%2B%E2%80%A6

对比三次项系数可得

%5Cbegin%7Baligned%7D%5Cfrac1%7B%5Cpi%5E2%7D%2B%5Cfrac1%7B2%5E2%5Cpi%5E2%7D%2B%5Cfrac1%7B3%5E2%5Cpi%5E2%7D%2B%E2%80%A6%3D%5Cfrac1%7B3!%7D%5C%5C%5CRightarrow%201%2B%5Cfrac1%7B2%5E2%7D%2B%5Cfrac1%7B3%5E2%7D%2B%E2%80%A6%3D%5Cfrac%7B%5Cpi%5E2%7D6%5Cend%7Baligned%7D

这就是Euler的证明过程,优雅且简洁,但实际上这个证明存在的一个问题就是Euler并没有严格证明 %5Csin%20x 可以像那样展开为无穷乘积

ps:其实欧拉给出过严谨的证明,但由于这一个证明太出名了,导致一些人认为他没有给出严谨证明

考虑 %5Ccos%20zt%2Ct%5Cin%5B-%5Cpi%2C%5Cpi%5D ,对 t 以周期为 2π 的Fourier级数展开,

%5Ccos%20zt%3D%5Cfrac%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20nt%2Bb_n%5Csin%20nt

之所以这样展开,是因为当中的

b_n%3D%5Cfrac1%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Ccos%20zt%20%5Csin%20nt%20%5Cmathrm%20dt%3D0

即展开式中只有余弦函数,并且以 2π 为周期展开也提供了许多方便

又通过高端的(硬)算,可得

a_n%3D%5Cfrac1%5Cpi%5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Ccos%20zt%5Ccos%20nt%5Cmathrm%20dt%3D(-1)%5En%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D

则有:

%5Ccos%20zt%3D%5Cfrac%7B1%7D%7Bz%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20(-1)%5En%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D%5Ccos%20nt

现在令 t=π ,可得

%5Ccos%20%5Cpi%20z%3D%5Cfrac%7B1%7D%7Bz%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D

%5CRightarrow%20%5Ccot%20%5Cpi%20z%3D%5Cfrac1%7B%5Cpi%20z%7D%2B%5Cfrac1%5Cpi%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D

根据上面的定理,由于 %5Csin%20z 是整函数,因此它可以由Weierstrass分解定理展开,但是为了方便,我们展开一下乘积:

%5Csin%20%5Cpi%20z%3De%5E%7BH(z)%7Dz%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1-%5Cfrac%20%7Bz%7D%7Bn%7D%5Cright)e%5E%7Bz%2Fn%7D%5Cleft(1%2B%5Cfrac%20%7Bz%7D%7Bn%7D%5Cright)e%5E%7B-z%2Fn%7D

%5CRightarrow%5Csin%20%5Cpi%20z%3De%5E%7BH(z)%7Dz%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1-%5Cfrac%20%7Bz%5E2%7D%7Bn%5E2%7D%5Cright)

取对数导数,可得:

H'(z)%3D%5Cpi%5Ccot%20z-%5Cpi%5Ccolor%7Bblue%7D%7B%5Cleft(%5Cfrac1%7B%5Cpi%20z%7D%2B%5Cfrac1%5Cpi%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D%5Cright)%7D

注意到蓝色部分就是余切函数,因此 H'(z)%3D0 ,即这是个常函数

令 z%5Crightarrow%200 ,可得

e%5E%7BH(z)%7D%3D%5Clim_%7Bz%5Cto0%7D%5Cfrac%7B%5Csin%20%5Cpi%20z%7D%7Bz%7D%3D%5Cpi

所以

%5Csin%20%5Cpi%20z%3D%5Cpi%20z%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1-%5Cfrac%20%7Bz%5E2%7D%7Bn%5E2%7D%5Cright)

最后经过简单的代换就能得到欧拉所展开的乘积了

无穷乘积——Weierstrass分解定理的评论 (共 条)

分享到微博请遵守国家法律