太阳系拥有最大轨道半长轴的天体排行
不确定警告:由于遥远天体体积较小,过于黯淡,其距离和公转/自行速度无法被精确测量,数据来自维基百科词条List of Solar System objects by greatest aphelion
AU:地球到太阳的平均距离149,597,582.503千米
LY:光年(1LY=63241.2488AU)
PC:秒差距(1PC=3.26157LY)
希尔斯云(奥尔特云内层)离太阳最近距离约为2000-5000AU(0.03-0.08LY)







太阳系中的彗星被认为有两个独立的起源地。短周期彗星(周期在200年以下)一般认为来自于柯伊伯带或离散盘,这两个相互连接的圆盘形区域位于海王星的轨道以外,距离太阳约30天文单位,由冰小天体组成。长周期彗星(周期可达数千年),如海尔-波普彗星,则可能源自奥尔特云。柯伊伯带天体的轨道相对稳定,因此来自柯伊伯带的彗星应该为数不多;另一方面,离散盘在天体动力学上较为活跃,作为彗星来源的可能性也大得多。来自离散盘的彗星进入外行星的轨道之内,此时被称为半人马小行星。继续被移入内太阳系的半人马小行星,就成为了短周期彗星。
太阳系内及进入太阳系的系外彗星理论远日点
未经说明,列表中所有彗星均为不回归型彗星
C/2012 S4 504,443 AU (8.0 ly/2.45pc)
C/2012 CH17 279,825 AU (4.4 ly/1.35pc)
C/2008 C1 203,253 AU (3.2 ly/0.98pc)
C/1992 J1 154,202 AU (2.4 ly/0.73pc)
C/2007 N3 144,828 AU (2.3 ly)
C/2017 T2 117,212 AU (1.9 ly)
C/1937 N1 115,031 AU (1.8 ly)
C/1972 X1 108,011 AU (1.7 ly)
C/2014 R3 80,260 AU (1.3 ly)
C/2015 O1 77,092 AU (1.2 ly)
C/2001 C1 76,230 AU (1.2 ly)
C/2002 J4 57,793 AU (0.91 ly)
C/1910 A1 51,589 AU (0.82 ly)
C/1958 D1 46,408 AU (0.73 ly)
C/1986 V1 37,825 AU (0.60 ly)
C/2005 G1 37,498 AU (0.59 ly)
C/2006 W3 35,975 AU (0.57 ly)
C/2009 W2 31,059 AU (0.49 ly)
C/2005 L3 26,779 AU (0.42 ly)
C/2004 YJ35 26,433 AU (0.42 ly)
C/2003 H3 26,340 AU (0.42 ly)
C/2010 L3 25,609 AU (0.40 ly)
C/1902 R1 25,066 AU (0.40 ly)
C/1889 G1 24,784 AU (0.39 ly)
C/2007 VO53 24,383 AU (0.39 ly)
C/2012 U1 24,373 AU
C/1958 R1 24,299 AU
C/2010 D3 23,255 AU
C/2001 K5 22,810 AU
C/1991 R1 22313AU
C/2009 U5 21191AU
C/2014 OE4 21176AU
C/1977 V1 19631AU
C/1888 P1 19612AU
C/2011 N2 19536AU
C/1910 P1 19190AU
C/1882 F1 19135AU
C/1984 W2 19000AU
C/2002 K1 18858AU
C/2002 C2 18034AU
C/2008 Q3 17850AU
C/2013 F2 16812AU
C/2010 H1 16721AU
C/1999 T1 16693AU
C/2004 P1 16107AU
C/1974 F1 15129AU
C/2013 J5 14297AU
C/2006 Q1 13768AU
C/2014 Q6 13761AU
C/1975 V1-A 13560AU
C/1999 F1 13390AU
观测弧最远彗星
Comet West 70,000 AU (1.1 ly)
C/1999 F1 66,600 AU(1.05ly)
C/2012 S4 5700 AU
C/1996 B2 3410 AU
C/1910 A1 2974 AU
C/1992 J1 3650 AU
C/2007 N3 2400AU
远日点最远的小行星和矮行星(大于200AU)
单位:AU
2017 MB7 6082 ±282
2014 FE72 3390 ±1400
2012 DR30 3248.7 ±7.5
2005 VX3 2081 ±430
2013 BL76 2064.1 ±5.1
541132 Leleākūhonua 2037 ±340
2015 KG163 1612 ±12
(308933) 2006 SQ372 1547 ±2
2013 SY99 1297 ±41
2002 RN109 1126 ±49
2013 AZ60 1062.00 ±0.49
(87269) 2000 OO67 1000.3 ±3.8
2007 DA61 990 ±130
(523622) 2007 TG422 902.29 ±0.44
90377 Sedna 890.5 ±1.1
2015 BP519 863 ±17
2017 UR52 822 ±230
2015 RX245 778 ±63
2010 BK118 772.20 ±0.46
2018 MP8 747 ±23
(418993) 2009 MS9 707.17 ±0.22
2010 GB174 671 ±46
2013 RF98 665 ±22
2015 GT50 626.7 ±5.6
(474640) 2004 VN112 583.6 ±3.2
2013 FT28 582 ±20
(336756) 2010 NV1 570.76 ±0.18
2017 SN33 560 ±56
2014 SR349 545 ±33
2011 OR17 532.13 ±0.29
(523719) 2014 LM28 524.28 ±0.14
1996 PW 500.56 ±0.64
2012 KA51 444 ±4000
2012 VP113 431.2 ±2.3
2014 GR53 421.47 ±0.08
(82158) 2001 FP185 419.14 ±0.12
2015 RY245 414.5 ±7.7
2002 GB32 402.41 ±0.99
(148209) 2000 CR105 398.1 ±1.1
2015 FK37 377 ±130
2017 CW32 372.37 ±0.17
2013 FS28 360 ±180
2003 SS422 360 ±270
2015 GX55 352.6 ±2.6
(505478) 2013 UT15 347.5 ±1.4
2012 GU11 346.89 ±0.13
(468861) 2013 LU28 342.26 ±0.22
2007 VJ305 342.13 ±0.30
2010 GW147 328.97 ±0.75
2017 DO121 328 ±2300
(469750) 2005 PU21 313.15 ±0.12
2013 UH15 305 ±15
(506479) 2003 HB57 294.2 ±1.2
(508338) 2015 SO20 290.51 ±0.07
2015 KH163 274.4 ±1.0
2015 TS350 272.23 ±0.13
(496315) 2013 GP136 269.08 ±0.33
2005 RH52 266.30 ±0.35
2017 UW51 265.97 ±0.15
(445473) 2010 VZ98 265.88 ±0.04
2013 JO64 263.03 ±0.22
2014 OS394 256.59 ±0.10
2014 JW80 247.08 ±0.17
2014 OR394 245.09 ±0.17
2014 SS349 243 ±24
2007 LH38 239.99 ±0.15
2007 TU431 234 ±2900
(353222) 2009 YD7 230.54 ±0.08
2014 UY224 230 ±16
2013 GJ138 226.99 ±0.12
2015 KE172 222.11 ±0.11
(54520) 2000 PJ30 222.0 ±1.9
2015 RB279 219.26 ±0.10
(523718) 2014 KZ101 218.84 ±0.02
2007 TC434 217.24 ±0.09
2018 VG18 208.5
(523726) 2014 MJ70 205.51 ±0.04
(181902) 1999 RD215 204.83 ±0.24
2014 NV65 204.6 ±1.5
2015 VD168 204.35 ±0.49
(523778) 2014 YK50 202.30 ±0.02
1999 CZ118 202.29 ±0.33
1999 DP8 200 ±5,500,000 (90 ly)
小于200AU
2018 DF4 198.71 ±0.11
2004 NN8 192.58 ±0.13
(65489) Ceto 186.92 ±0.02
(303775) 2005 QU 182 186.33 ±0.03
2018 KH3 185.68 ±0.51
2015 DW224 185.08 ±0.05
(437360) 2013 TV158 182.86 ±0.02
(523771) 2014 XP40 182.01 ±0.02
2014 KA102 179.21 ±0.09
2014 UZ224 179 ±16
(184212) 2004 PB112 177.93 ±0.19
(29981) 1999 TD10 177.69 ±0.04
2000 KP65 177.2 ±3.5
2012 FL84 173.89 ±0.07
2014 DT143 173.56 ±0.07
2015 KR174 173.11 ±0.12
2014 WY508 172.85 ±0.03
(91554) 1999 RZ215 172.23 ±0.12
2015 RC279 171.96 ±0.23
2015 GY55 169.90 ±0.09
2014 FL72 169.7 ±5.3
2014 JE80 168.75 ±0.07
2014 SR350 166 ±23
2011 OB60 164.26 ±0.09
2015 RK245 161.22 ±0.03
2014 YD50 160.36 ±0.03
2011 WJ157 159.95 ±0.03
2015 VB168 159.57 ±0.89
2010 ER65 159.38 ±0.01
2015 GU55 157.73 ±0.10
2013 LD16 157.43 ±0.09
2011 BR163 157.12 ±0.04
(118702) 2000 OM67 157.08 ±0.20
2014 SU349 160 ±310
旅行者一号距地距离 159.39(0.926光天)
2008 ST291 156.40 ±0.34
2014 SW349 156 ±20
2011 HO60 155.71 ±0.03
2003 QM112 155 ±12
(470593) 2008 LP17 153.25 ±0.02
(26181) 1996 GQ21 151.76 ±0.02
2014 FJ72 151.0 ±7.5
(145474) 2005 SA278 149.18 ±0.02
1999 CY118 149.16 ±0.16
2005 RP43 148.63 ±0.02
2006 HQ122 148.05 ±0.03
2015 PK312 148 ±52
2010 JJ124 147.62 ±0.18
2017 RG16 147.45 ±0.03
2012 UK177 147.25 ±0.43
2014 XS3 146.89 ±0.03
(523698) 2014 GD54 146.82 ±0.02
(307982) 2004 PG115 144.93 ±0.01
(145451) 2005 RM43 144.05 ±0.02
(500832) 2013 GZ136 143.43 ±0.06
2015 GB56 143.16 ±0.10
2007 FN51 142.78 ±0.10
2014 OY393 142 ±20
(82155) 2001 FZ173 141.82 ±0.08
2003 YQ179 140.17 ±0.06
2002 PR170 140 ±35
1999 CF119 140.02 ±0.12
2007 LF38 138.90 ±0.09
2015 GW55 137.6 ±1.6
2008 JO41 137.60 ±0.05
2005 EF304 137.55 ±0.10
(523798) 2017 CX33 137.10 ±0.02
2015 PZ315 140 ±290
2010 JH124 136.55 ±0.14
(523797) 2016 NM56 136.46 ±0.01
2015 TH367 140 ±120
2015 VL168 136.0 ±2.2
2010 PU75 135.38 ±0.01
2003 QY91 100 ±98000
(523755) 2014 WZ508 132.99 ±0.01
2016 EJ203 132.23 ±0.02
旅行者二号距地距离 133.24
1999 RZ214 131.96 ±0.13
2000 CP105 100 ±73000
2015 VQ167 131.49 ±0.47
1999 DG8 100 ±4000000
2013 BN27 131 ±21
(15874) 1996 TL66 130.17 ±0.01
2014 XX40 130.07 ±0.03
2017 MZ4 129.23 ±0.02
(523794) 2015 RR245 128.62 ±0.03
2015 TJ367 128 ±16
2006 HV122 127.61 ±0.17
2013 OR11 127.57 ±0.01
2003 UA414 126.94 ±0.01
先驱者10号距地距离 126.8(旧)
2014 WM510 125.27 ±0.10
2015 KU174 125.11 ±0.04
(523777) 2014 YF50 125.10 ±0.01
2014 SY349 125 ±79
2001 FK194 100 ±10000
(523733) 2014 PR70 124.06 ±0.01
2014 SZ349 124 ±52
2005 NU125 122.94 ±0.02
2015 KZ173 122.87 ±0.09
2014 DQ143 122.74 ±0.03
2010 GW64 122.73 ±0.19
2013 SE99 122.5 ±2.5
2013 JR64 122.54 ±0.04
2005 OE 122.41 ±0.10
2012 HD2 122.21 ±0.02
(523767) 2014 WH510 121.42 ±0.01
2015 RL278 120.94 ±0.06
2004 TF282 120.43 ±0.02
2015 VS167 120.42 ±0.04
2001 KZ76 100 ±110000
2000 SQ331 100 ±78000
2010 JO179 119.04 ±0.03
2014 XQ40 118.80 ±0.01
2003 LA7 118.53 ±0.28
2011 UW412 117.73 ±0.56
2014 WN510 117.55 ±0.05
2012 BZ154 117.37 ±0.07
2014 OO394 117 ±70
2017 OX68 116.29 ±0.01
2013 QQ95 116.10 ±0.12
2000 PF30 116.00 ±0.16
2013 JV64 116.0 ±1.7
2014 SO350 115.64 ±0.14
2000 PH30 115.23 ±0.12
2004 VM131 114.92 ±0.05
2003 FH129 114.67 ±0.10
(451657) 2012 WD36 114.32 ±0.08
2015 FQ345 114.06 ±0.04
2005 PT21 114.04 ±0.80
2015 VP166 114.02 ±0.13
(127546) 2002 XU93 113.59 ±0.04
2015 VO166 112.82 ±0.62
2015 TN178 111.64 ±0.01
2011 UP411 111.63 ±0.05
2015 DA225 111.05 ±0.47
2009 KN30 110.82 ±0.06
2015 RK258 111 ±14
2015 RZ278 110.69 ±0.07
2012 BX154 110.30 ±0.08
2011 UJ413 110.16 ±0.03
2015 RB278 109.35 ±0.28
2016 SW50 109.30 ±0.61
2015 BZ517 110 ±150
2007 LJ38 108.70 ±0.06
2012 UR177 108.68 ±0.06
2015 VA168 108.67 ±0.06
2015 KO174 108.61 ±0.03
471143 Dziewanna 108.54 ±0.02
229762 Gǃkúnǁʼhòmdímà 108.28 ±0.01
2014 UV224 108.26 ±0.04
2011 YN79 108.04 ±0.04
2005 GX206 107.71 ±0.01
2007 TA418 107.46 ±0.08
2014 UV229 107.40 ±0.03
2012 DY98 107.22 ±0.02
(160148) 2001 KV76 107.11 ±0.18
2013 AR183 107.09 ±0.03
2003 OS33 106 ±72
2015 VR167 106.19 ±0.28
(65407) 2002 RP120 105.99 ±0.01
(126619) 2002 CX154 105.83 ±0.10
2007 RM314 105.43 ±0.06
(145480) 2005 TB190 104.90 ±0.01
2015 GC56 104.69 ±0.04
先驱者11号距地距离 104.4(旧)
(523722) 2014 LV28 104.12 ±0.01
(523680) 2013 YJ151 103.84 ±0.01
2014 FC69 104 ±16
(471272) 2011 FY9 103.64 ±0.02
(500876) 2013 JD64 103.63 ±0.04
2006 HX122 104 ±8
2000 AB229 103.47 ±0.42
2015 RH279 103.30 ±0.16
2001 OM109 103.17 ±0.27
2014 WJ510 102.90 ±0.01
(523770) 2014 XO40 102.64 ±0.01
2014 SD350 102 ±98
2001 OT108 100 ±74000
2015 KF172 101 ±12
225088 Gonggong 101.17 ±0.01
2015 VE168 101.13 ±0.05
2014 FC72 101.00 ±0.01
2015 DX224 100.86 ±0.03
2012 EE18 100.82 ±0.04
2007 TR436 100 ±6200
2015 RA279 100.36 ±0.51
2005 LC54 100.18 ±0.13
2014 QC442 99.9 ±1.9
2016 PO66 100 ±2800
2001 FN194 100 ±72000
2011 UQ412 98.80 ±0.03
2014 UA225 98.80 ±0.02
2017 YG5 99 ±25
2000 YY1 98 ±73
2006 HO122 100 ±170
2013 UE15 97.74 ±0.01
(523652) 2011 LZ28 97.57 ±0.01
(136199) Eris 97.47 ±0.01
2003 QK91 96.98 ±0.06
2004 VH131 96.96 ±0.08
2000 SS331 100 ±53000
2000 QK226 100 ±8800
2014 OP394 96.52 ±0.02
2014 FZ71 96.49 ±0.50
2006 QH181 96.36 ±0.63
2009 DJ143 96.22 ±0.02
2004 VG131 95.53 ±0.11
2015 VG168 95.49 ±0.19
(470599) 2008 OG19 95.39 ±0.01
(480017) 2014 QB442 95.32 ±0.01
(523800) 2017 KZ31 95.23 ±0.01
2013 UR15 95.08 ±0.03
2001 FJ194 100 ±5300
2014 HC200 94.88 ±0.03
(523639) 2010 RE64 94.46 ±0.01
2000 PS30 100 ±17000
2006 QG181 93.79 ±0.08
2016 CO264 93.77 ±0.00
2009 DD47 94 ±18
(136120) 2003 LG7 93.56 ±0.11
(523753) 2014 WV508 93.33 ±0.01
2014 ON394 93.01 ±0.04
2014 QR441 92.98 ±0.30
2015 GZ55 92.93 ±0.09
2006 QJ181 92.83 ±0.01
2015 GD56 92.66 ±0.11
2011 US411 92.63 ±0.03
2013 RO98 90 ±250
2015 VN166 92.40 ±0.08
2014 WL510 91.91 ±0.06
2004 HQ79 91.89 ±0.04
2015 KY173 91.82 ±0.14
2014 FX71 91.60 ±0.54
(523787) 2015 DV224 91.38 ±0.01
2015 BB519 91.27 ±0.05
2001 KG77 90.97 ±0.13
2010 XE91 90.94 ±0.02
1998 XY95 90.91 ±0.01
2009 KX36 90 ±190
2015 RZ277 90.30 ±0.49
2015 VM166 90.15 ±0.05
2015 UH87 90 ±22
冥王星远日点 49
新视野号距地距离 47.8(旧)
海王星远日点 30.44
词条原文
This is a list of Solar System objects by greatest aphelion or the greatest distance from the Sun that the orbit takes it. For the purposes of this list, it is implied that the object is orbiting the Sun in a two-body solution without the influence of the planets or passing stars. The aphelion can change significantly due to the gravitational influence of planets and other stars. Most of these objects are comets on a calculated path and may not be directly observable.[1] For instance, comet Hale-Bopp was last seen in 2013 at magnitude 24[2] and continues to fade, making it invisible to all but the most powerful telescopes.
The maximum extent of the region in which the Sun's gravitational field is dominant, the Hill sphere, may extend to 230,000 astronomical units (3.6 light-years) as calculated in the 1960s.[3] But any comet currently more than about 150,000 AU (2 ly) from the Sun can be considered lost to the interstellar medium. The nearest known star is Proxima Centauri at 271,000 AU which is 4.22 light years,[4] followed by Alpha Centauri at about 4.35 light years away according to NASA.[4]
Comets are thought to orbit the Sun at great distances, but then be perturbed by passing stars and the galactic tides.[5] As they come into or leave the inner Solar System they may have their orbit changed by the planets, or alternatively be ejected from the Solar System.[5] It is also possible they may collide with the Sun or a planet.[5]
As many of the objects listed below have some of the most extreme orbits of any objects in the Solar System, describing their orbit precisely can be particularly difficult. For most objects in the Solar System, a heliocentric reference frame (relative to the gravitational center of the Sun) is sufficient to explain their orbits. However, as the orbits of objects become closer to the Solar System's escape velocity, with long orbital periods on the order of hundreds or thousands of years, a different reference frame is required to describe their orbit: a barycentric reference frame. A barycentric reference frame measures the asteroid's orbit relative to the gravitational center of the entire Solar System, rather than just the Sun. Mostly due to the influence of the outer gas giants, the Solar System barycenter varies by up to twice the radius of the Sun.
This difference in position can lead to significant changes in the orbits of long-period comets and distant asteroids. Many comets have hyperbolic (unbound) orbits in a heliocentric reference frame, but in a barycentric reference frame have much more firmly bound orbits, with only a Small handful remaining truly hyperbolic.
Eccentricity and VinfEdit
The orbital parameter used to describe how non-circular an object's orbit is, is eccentricity(e). An object with an e of 0 has a perfectly circular orbit, with its perihelion distancebeing just as close to the Sun as its aphelion distance. An object with an e of between 0 and 1 will have an elliptical orbit, with, for instance, an object with an e of 0.5 having a perihelion twice as close to the Sun as its aphelion. As an object's e approaches 1, its orbit will be more and more elongated before, and at e=1, the object's orbit will be parabolicand unbound to the Solar System (i.e. not returning for another orbit). An e greater than 1 will be hyperbolic and still be unbound to the Solar System.
Although it describes how "unbound" an object's orbit is, eccentricity does not necessarily reflect how high an incoming velocity said object had before entering the Solar System (a parameter known as Vinfinity, or Vinf). An object would need a much lower velocity to be unbound from the Solar System if it didn't have an especially nearby perihelion, but an object with a perihelion inside the orbit of Mercury would need a much higher excess velocity to escape the Solar System. A clear example of this is the eccentricities of the two known Interstellar objects as of October 2019, 1I/'Oumuamua. and 2I/Borisov. 'Oumuamua had an incoming Vinf of 26.5 kilometres per second (59,000 mph), but due to its low perihelion distance of only 0.255 au, it had an eccentricity of 1.200. However, Borisov's Vinfwas only slightly higher, at 32.3 km/s (72,000 mph), but due to its higher perihelion distance of ~2.003 au, its eccentricity was a comparably higher 3.340. In practice, no object originating from the Solar System should have an incoming heliocentric eccentricity much higher than 1, and should rarely have an incoming barycentric eccentricity of above 1, as that would imply that the object had originated from an indefinitely far distance from the Sun.
Orbital epochsEdit
Due to having the most eccentric orbits of any Solar System body, a comet's orbit typically intersects one or more of the planets in the Solar System. As a result, the orbit of a comet is frequently perturbed significantly, even over the course of a single pass through the inner Solar System. Due to the changing orbit, it's necessary to provide a calculation of the orbit of the comet (or similarly orbiting body) both before and after entering the inner Solar System. A standard epoch of 1600 is given for the incoming orbits, and 2400 for ouTGoing orbits. For example, Comet ISON was ~312 au from the Sun in 1600, and its remnants will be ~431 au from the Sun in 2400, both well outside of any significant gravitational influence from the planets.
Examples of comets with a more well-determined orbit. Comets are extremely Small relative to other bodies and hard to observe once they stop ouTGassing (see Coma (cometary)). Because they are typically discovered close to the Sun, it will take some time even thousands of years for them to actually travel out to great distances. The Whipple proposal might be able to detect Oort cloud objects at great distances, but probably not a particular object.
A large number of trans-Neptunian objects(TNOs) – minor planets orbiting beyond the orbit of Neptune – have been discovered in recent years. Many TNOs have orbits with an aphelion (farthest distance to the Sun) far beyond Neptune's orbit at 30.1 AU. Some of these TNOs with an extreme aphelion are detached objects such as 2010 GB174, which always reside in the outermost region of the Solar System, while for other TNOs, the extreme aphelion is due to an exceptionally high eccentricity such as for 2005 VX3, which orbits the Sun at a distance between 4.1 (closer than Jupiter) and 2200 AU (70 times farther from the Sun than Neptune). The following is a list of TNOs with the largest aphelion in descending order.[14][15]
参考
- ^ a b JPL Small-Body Database Search Engine: Q > 20000 (au)
- ^ "C/1995 O1 (Hale-Bopp)". Minor Planet Center. Retrieved 14 March 2018.
- ^ Chebotarev, G.A. (1964), "Gravitational Spheres of the Major Planets, Moon and Sun", Soviet Astronomy, 7 (5): 618–622, Bibcode:1964SvA.....7..618C
- ^ a b NASA – Imagine the Universe: The Nearest Star
- ^ a b c Frequently Asked Questions About General Astronomy
- ^ a b c Furthest SSB
- ^ Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1975 V1-A (West)". Retrieved 2011-02-01. (Solution using the Solar System Barycenter. Select Ephemeris Type:Elements and Center:@0)
- ^ Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1999 F1 (Catalina)". Retrieved 2011-03-07. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
- ^ Horizons output. "Barycentric Osculating Orbital Elements for Comet C/2012 S4 (PANSTARRS)". Retrieved 2015-09-26. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
- ^ Horizons output (2011-01-30). "Barycentric Osculating Orbital Elements for Comet Hyakutake (C/1996 B2)". Retrieved 2011-01-30. (Horizons)
- ^ Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1910 A1 (Great January comet)". Retrieved 2011-02-07. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
- ^ Horizons output. "Barycentric Osculating Orbital Elements for Comet C/1992 J1 (Spacewatch)". Retrieved 7 October 2012. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
- ^ Horizons output. "Barycentric Osculating Orbital Elements for Comet Lulin (C/2007 N3)". Retrieved 2011-01-30. (Solution using the Solar System Barycenter. Select Ephemeris Type:Elements and Center:@0)
- ^ a b c JPL asteroids greater than 200 AU aphelion (Q)
- ^ a b JPL asteroids aphelion greater than 800 AU
- ^ Marc W. Buie. "Orbit Fit and Astrometric record for 308933" (2010-09-17 using 64 of 65 observations over 5.01 years). SwRI (Space Science Department). Retrieved 2008-09-05.
- ^ Becker, J. C; et al. (14 May 2018). "Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination". The Astronomical Journal. 156 (2): 81. arXiv:1805.05355. doi:10.3847/1538-3881/aad042. S2CID 55163842.
- ^ Marc W. Buie (2007-11-08). "Orbit Fit and Astrometric record for 04VN112". SwRI (Space Science Department). Archived from the original on 2010-08-18. Retrieved 2008-07-17.
- ^ "JPL Small-Body Database Browser: (2004 VN112)". Retrieved 2011-05-20.
- ^ JPL database down to 100 AU aphelion minor planets