欢迎光临散文网 会员登陆 & 注册

量子场论(五):实标量场的哈密顿量与总动量

2022-11-05 19:35 作者:我的世界-华汁  | 我要投稿


实标量场的哈密顿量密度为:

%5Cmathcal%20H%3D%5Cpi%5Cdot%5Cphi-%5Cmathcal%20L%3D%5Cfrac12%5Cpi%5E2%2B%5Cfrac12(%5Cnabla%5Cphi)%5E2%2B%5Cfrac12m%5E2%5Cphi%5E2.%5Ctag%7B5.1%7D

对全空间积分得到哈密顿算符:

%5Cbegin%7Balign%7D%5Chat%20H%26%3D%5Cint%5Cmathcal%20H%5Cmathrm%20d%5E3x%3D%5Cfrac12%5Cint%5B%5Cpi%5E2%2B(%5Cnabla%5Cphi)%5E2%2Bm%5E2%5Cphi%5E2%5D%5Cmathrm%20d%5E3x%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5C%7B%5B(-iE_%5Cmathbf%20p)(-iE_%5Cmathbf%20q)%2B(i%5Cmathbf%20p)%5Ccdot(i%5Cmathbf%20q)%5D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a%5E%5Cdagger_%5Cmathbf%20pe%5E%7Bip%5Ccdot%20x%7D)(a_%5Cmathbf%20qe%5E%7B-iq%5Ccdot%20x%7D-a%5E%5Cdagger_%5Cmathbf%20qe%5E%7Biq%5Ccdot%20x%7D)%2Bm%5E2(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pe%5E%7Bip%5Ccdot%20x%7D)(a_%5Cmathbf%20qe%5E%7B-iq%5Ccdot%20x%7D%2Ba%5E%5Cdagger_%5Cmathbf%20qe%5E%7Biq%5Ccdot%20x%7D)%5C%7D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5C%7B(E_%5Cmathbf%20pE_%5Cmathbf%20q%2B%5Cmathbf%20p%5Ccdot%5Cmathbf%20q%2Bm%5E2)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7B-i(p-q)%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20qe%5E%7Bi(p-q)%5Ccdot%20x%7D%5D%2B(-E_%5Cmathbf%20pE_%5Cmathbf%20q-%5Cmathbf%20p%5Ccdot%5Cmathbf%20q%2Bm%5E2)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7B-i(p%2Bq)%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Bi(p%2Bq)%5Ccdot%20x%7D%5D%5C%7D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5C%7B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)(E_%5Cmathbf%20pE_%5Cmathbf%20q%2B%5Cmathbf%20p%5Ccdot%5Cmathbf%20q%2Bm%5E2)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7B-i(p%5E0-q%5E0)t%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20qe%5E%7Bi(p%5E0-q%5E0)t%7D%5D%2B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p%2B%5Cmathbf%20q)(-E_%5Cmathbf%20pE_%5Cmathbf%20q-%5Cmathbf%20p%5Ccdot%5Cmathbf%20q%2Bm%5E2)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7B-i(p%5E0%2Bq%5E0)t%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Bi(p%5E0%2Bq%5E0)t%7D%5D%5C%7D%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E32E_%5Cmathbf%20p%7D%5B(E_%5Cmathbf%20p%5E2%2B%7C%5Cmathbf%20p%7C%5E2%2Bm%5E2)(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%20%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p)%2B(-E_%5Cmathbf%20p%5E2%2B%7C%5Cmathbf%20p%7C%5E2%2Bm%5E2)(a_%5Cmathbf%20pa_%7B-%5Cmathbf%20p%7De%5E%7B-2iE_%5Cmathbf%20pt%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa%5E%5Cdagger%20_%7B-%5Cmathbf%20p%7De%5E%7B2iE_%5Cmathbf%20pt%7D)%5D%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20p(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%20%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p)%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20p%5B2a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%20%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20p)%5D%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20pa%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%5Cmathrm%20d%5E3p%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf0)%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Cfrac%7BE_%5Cmathbf%20p%7D2%5Cmathrm%20d%5E3p.%5Cend%7Balign%7D%5Ctag%7B5.2%7D

这个结果可以看作是一维简谐振子的哈密顿量向无穷多自由度的推广。

%5Chat%20N_%5Cmathbf%20p%5Cequiv%20a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.3%7D

是三维动量空间中%5Cmathbf%20p处的粒子数密度算符。

(5.2)式最后一行的第一项是所有粒子贡献的能量之和。而第二项,如果积分是针对于全空间的话,那么该项就是一个无穷大的数(不是算符),是真空的零点能。如果不考虑引力现象,那么零点能并不重要,重要的是两个能量的差。都有零点能就相当于没有。

哈密顿算符与产生湮灭算符的对易关系为:

%5B%5Chat%20H%2Ca_%5Cmathbf%20p%5E%5Cdagger%5D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20qa_%5Cmathbf%20q%5E%5Cdagger%5Ba_%5Cmathbf%20q%2Ca_%5Cmathbf%20p%5E%5Cdagger%5D%5Cmathrm%20d%5E3q%3D%5Cint%20E_%5Cmathbf%20qa_%5Cmathbf%20q%5E%5Cdagger%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20q-%5Cmathbf%20p)%5Cmathrm%20d%5E3q%3DE_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger.%5Ctag%7B5.4%7D

%5B%5Chat%20H%2Ca_%5Cmathbf%20p%5D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20q%5Ba%5E%5Cdagger_%5Cmathbf%20q%2Ca_%5Cmathbf%20p%5Da_%5Cmathbf%20q%5Cmathrm%20d%5E3q%3D-%5Cint%20E_%5Cmathbf%20qa_%5Cmathbf%20q%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20q-%5Cmathbf%20p)%5Cmathrm%20d%5E3q%3D-E_%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.5%7D

因此:

%5Chat%20Ha_%5Cmathbf%20p%5E%5Cdagger%3Da_%5Cmathbf%20p%5E%5Cdagger%5Chat%20H%2BE_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%5C%20%2C%5C%20%5Chat%20Ha_%5Cmathbf%20p%3Da_%5Cmathbf%20p%5Chat%20H-E_%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.6%7D

%7CE%5Crangle是哈密顿算符的本征态,本征值为E%2C则有:

%5Chat%20H%7CE%5Crangle%3DE%7CE%5Crangle.%5Ctag%7B5.7%7D

从而:

%5Chat%20Ha_%5Cmathbf%20p%5E%5Cdagger%7CE%5Crangle%3D(a_%5Cmathbf%20p%5E%5Cdagger%5Chat%20H%2BE_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger)%7CE%5Crangle%3D(E%2BE_%5Cmathbf%20p)a_%5Cmathbf%20p%5E%5Cdagger%7CE%5Crangle.%5Ctag%7B5.8%7D

%5Chat%20Ha_%5Cmathbf%20p%7CE%5Crangle%3D(a_%5Cmathbf%20p%5Chat%20H-E_%5Cmathbf%20pa_%5Cmathbf%20p)%7CE%5Crangle%3D(E-E_%5Cmathbf%20p)a_%5Cmathbf%20p%7CE%5Crangle.%5Ctag%7B5.9%7D

可见产生算符的作用就是让能量本征值增加E_%5Cmathbf%20p%2C而湮灭算符的作用是让能量本征值减少E_%5Cmathbf%20p.

实标量场的总动量算符为:

%5Cbegin%7Balign%7D%5Chat%7B%5Cmathbf%20p%7D%26%3D-%5Cint%5Cpi%5Cnabla%5Cphi%5Cmathrm%20d%5E3x%3D-%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D(-iE_%5Cmathbf%20p)(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)(i%5Cmathbf%20q)(a_%5Cmathbf%20qe%5E%7B-iq%5Ccdot%20x%7D-a_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Biq%5Ccdot%20x%7D)%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D-%5Cint%5Cfrac%7BE_%5Cmathbf%20p%5Cmathbf%20q%7D%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5B-a_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7B-i(p-q)%5Ccdot%20x%7D-a%5E%5Cdagger%20_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7Bi(p-q)%5Ccdot%20x%7D%2Ba_%5Cmathbf%20pa_%5Cmathbf%20q%20e%5E%7B-i(p%2Bq)%5Ccdot%20x%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Bi(p%2Bq)%5Ccdot%20x%7D%5D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D-%5Cint%5Cfrac%7BE_%5Cmathbf%20p%5Cmathbf%20q%7D%7B(2%5Cpi)%5E3%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20q%7D%7D%5C%7B-%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7B-i(p%5E0-q%5E0)t%7D%2Ba%5E%5Cdagger%20_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7Bi(p%5E0-q%5E0)t%7D%5D%2B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p%2B%5Cmathbf%20q)%5Ba_%5Cmathbf%20pa_%5Cmathbf%20q%20e%5E%7B-i(p%5E0%2Bq%5E0)t%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20e%5E%7Bi(p%5E0%2Bq%5E0)t%7D%5D%5C%7D%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3q%5C%5C%26%3D%5Cint%5Cfrac%7BE_%5Cmathbf%20p%5Cmathbf%20p%7D%7B(2%5Cpi)%5E32E_%5Cmathbf%20p%7D(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2Ba_%5Cmathbf%20pa_%7B-%5Cmathbf%20p%7De%5E%7B-2iE_%5Cmathbf%20pt%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa%5E%5Cdagger_%7B-%5Cmathbf%20p%7De%5E%7B2iE_%5Cmathbf%20pt%7D)%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20p(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2Ba_%5Cmathbf%20pa_%7B-%5Cmathbf%20p%7De%5E%7B-2iE_%5Cmathbf%20pt%7D%2Ba%5E%5Cdagger_%5Cmathbf%20pa%5E%5Cdagger_%7B-%5Cmathbf%20p%7De%5E%7B2iE_%5Cmathbf%20pt%7D)%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20p(a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%2Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p)%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cfrac12%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20p%5B2a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5D%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20pa%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%5Cmathrm%20d%5E3p%2B%5Cfrac12%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5Cint%5Cmathbf%20p%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Cmathbf%20pa%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%5Cmathrm%20d%5E3p.%5Cend%7Balign%7D%5Ctag%7B5.10%7D

%7C%5Cmathbf%20p%5Crangle是哈密顿算符的本征态,本征值为%5Cmathbf%20p%2C则有:

%5Chat%7B%5Cmathbf%20p%7D%7C%5Cmathbf%20p%5Crangle%3D%5Cmathbf%20p%7C%5Cmathbf%20p%5Crangle.%5Ctag%7B5.11%7D

动量算符与产生湮灭算符的对易子为:

%5B%5Chat%7B%5Cmathbf%20p%7D%2Ca_%5Cmathbf%20p%5E%5Cdagger%5D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Cmathbf%20qa_%5Cmathbf%20q%5E%5Cdagger%5Ba_%5Cmathbf%20q%2Ca_%5Cmathbf%20p%5E%5Cdagger%5D%5Cmathrm%20d%5E3q%3D%5Cint%5Cmathbf%20qa_%5Cmathbf%20q%5E%5Cdagger%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20q-%5Cmathbf%20p)%5Cmathrm%20d%5E3q%3D%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger.%5Ctag%7B5.12%7D

%5B%5Chat%7B%5Cmathbf%20p%7D%2Ca_%5Cmathbf%20p%5D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Cmathbf%20q%5Ba%5E%5Cdagger_%5Cmathbf%20q%2Ca_%5Cmathbf%20p%5Da_%5Cmathbf%20q%5Cmathrm%20d%5E3q%3D-%5Cint%5Cmathbf%20qa_%5Cmathbf%20q%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20q-%5Cmathbf%20p)%5Cmathrm%20d%5E3q%3D-%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.13%7D

也就是说:

%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%5E%5Cdagger%3Da_%5Cmathbf%20p%5E%5Cdagger%5Chat%7B%5Cmathbf%20p%7D%2B%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger%5C%20%2C%5C%20%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%3Da_%5Cmathbf%20p%5Chat%7B%5Cmathbf%20p%7D-%5Cmathbf%20pa_%5Cmathbf%20p.%5Ctag%7B5.14%7D

从而:

%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%5E%5Cdagger%7C%7B%5Cmathbf%20q%7D%5Crangle%3D(a_%5Cmathbf%20p%5E%5Cdagger%5Chat%7B%5Cmathbf%20p%7D%2B%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger)%7C%7B%5Cmathbf%20q%7D%5Crangle%3D(%7B%5Cmathbf%20q%7D%2B%5Cmathbf%20p)a_%5Cmathbf%20p%5E%5Cdagger%7C%7B%5Cmathbf%20q%7D%5Crangle.%5Ctag%7B5.15%7D

%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%7C%7B%5Cmathbf%20q%7D%5Crangle%3D(a_%5Cmathbf%20p%5Chat%7B%5Cmathbf%20p%7D-%5Cmathbf%20pa_%5Cmathbf%20p)%7C%7B%5Cmathbf%20q%7D%5Crangle%3D(%7B%5Cmathbf%20q%7D-%5Cmathbf%20p)a_%5Cmathbf%20p%7C%7B%5Cmathbf%20q%7D%5Crangle.%5Ctag%7B5.16%7D

可见产生算符的作用就是让动量本征值增加%5Cmathbf%20p%2C而湮灭算符的作用是让动量本征值减少%5Cmathbf%20p.

量子场论(五):实标量场的哈密顿量与总动量的评论 (共 条)

分享到微博请遵守国家法律