欢迎光临散文网 会员登陆 & 注册

给圆周率完整的一生第二讲-参考文献

2023-06-06 15:15 作者:测地肥猫  | 我要投稿

 

吴文俊《中国数学史大系》


 https://www.maa.org/press/periodicals/convergence/the-mathematical-cultures-of-medieval-europe-introduction美国数学会中世纪欧洲史,https://www.maa.org/press/periodicals/convergence/the-mathematical-cultures-of-medieval-europe-introduction

https://www.maa.org/美国数学会, https://www.maa.org/

https://mathgenealogy.org/数学家世系谱, https://mathgenealogy.org/

 微信公众号,数学教学研究,卡瓦列里原理 作者:邵勇老师

 微信公众号,数学教学研究,用积分方法计算牟和方盖体积, 作者:邵勇老师

 微信公众号,上海初高中数学,牟和方盖,作者:谭峰

 希腊哲学史(修订本)2010年, 人民出版社出版, 汪子嵩、范明生 等著,方国根、李之美 等责任编辑

 https://www.zhihu.com/question/24940378π是怎么计算出来的,https://www.zhihu.com/question/24940378

 https://zhuanlan.zhihu.com/p/103469384阿波罗尼乌斯圆周曲线论, https://zhuanlan.zhihu.com/p/103469384

 https://mathworld.wolfram.com/ArchimedesRecurrenceFormula.html阿基米德递推关系式, https://mathworld.wolfram.com/ArchimedesRecurrenceFormula.html

 https://mathworld.wolfram.com/ArchimedesAlgorithm.html阿基米德算法, https://mathworld.wolfram.com/ArchimedesAlgorithm.html

  https://math.stackexchange.com/questions/1006072/updated-why-didnt-archimedes-further-approximate-pi-this-way-or-did-he阿基米德算法的外插法, https://math.stackexchange.com/questions/1006072/updated-why-didnt-archimedes-further-approximate-pi-this-way-or-did-he 

 https://demonstrations.wolfram.com/ApproximatingPiWithInscribedPolygons/wolfram演示文档-用内接多边形逼近圆, https://demonstrations.wolfram.com/ApproximatingPiWithInscribedPolygons/

 https://mathworld.wolfram.com/PiFormulas.htmlPi的相关公式, https://mathworld.wolfram.com/PiFormulas.html

 https://mathshistory.st-andrews.ac.uk/Biographies/Aristaeus/Aristaeus, https://mathshistory.st-andrews.ac.uk/Biographies/Aristaeus/ 

 https://mathshistory.st-andrews.ac.uk/Biographies/Theodosius/Theodosius, https://mathshistory.st-andrews.ac.uk/Biographies/Theodosius/ https://mathshistory.st-andrews.ac.uk/Biographies/Autolycus/Autolycus, https://mathshistory.st-andrews.ac.uk/Biographies/Autolycus/


 https://mathshistory.st-andrews.ac.uk/Biographies/Aristarchus/Aristarchus, https://mathshistory.st-andrews.ac.uk/Biographies/Aristarchus/


 https://www.britannica.com/science/Pappuss_theorem帕普斯定理, https://www.britannica.com/science/Pappuss_theorem

 https://music.stackexchange.com/questions/56517/五度好听的原因, https://music.stackexchange.com/questions/56517/

 https://zhuanlan.zhihu.com/p/113997099不同位置拨弦银色不同的原理, https://zhuanlan.zhihu.com/p/113997099


 https://www.geogebra.org/m/xqXNW5TE阿基米德对π的估计, https://www.geogebra.org/m/xqXNW5TE

 Will Durant -Full 11-Volume Set The Story of Civilization (1931) Simon and Schuster

 https://www.ams.org/notices/200902/rtx090200212p.pdfBirds and Frogs Dyson, https://www.ams.org/notices/200902/rtx090200212p.pdf

 https://www.britannica.com/biography/Freeman-Dyson物理,科普与教育家 Freem-Dyson, https://www.britannica.com/biography/Freeman-Dyson

 https://www.math.tamu.edu/~dallen/masters/Greek/content4.html古希腊数学, https://www.math.tamu.edu/~dallen/masters/Greek/content4.html

 https://math.fandom.com/zh/wiki中文数学Wiki, https://math.fandom.com/zh/wiki

 https://www.math.tamu.edu/~dallen/masters/德州农工大学数学史教程, https://www.math.tamu.edu/~dallen/masters/

 https://arxiv.org/ftp/arxiv/papers/2008/2008.07995.pdf阿基米德的密率估计, https://arxiv.org/ftp/arxiv/papers/2008/2008.07995.pdf

 https://www.britannica.com/science/mathematics/Number-theory大英百科介绍-数学, https://www.britannica.com/science/mathematics/Number-theory

 https://www.math.uci.edu/~ndonalds/math184/加州大学尔湾分校 数学史课程, https://www.math.uci.edu/~ndonalds/math184/

 https://www.britannica.com/biography/Heron-of-Alexandria海伦公式, https://www.britannica.com/biography/Heron-of-Alexandria

 https://upcommons.upc.edu/bitstream/handle/2117/20201/vol6(2)_Parte14.pdf均轮与微分方程, https://upcommons.upc.edu/bitstream/handle/2117/20201/vol6(2)_Parte14.pdf

 https://arxiv.org/pdf/2212.03418.pdfGeneralized Lindemann-Weierstrass and

Gelfond-Schneider-Baker Theorems, ttps://arxiv.org/pdf/2212.03418.pdf 

 https://websites.math.leidenuniv.nl/algebra/chebotarev.pdfchebotarev数论与密度定理, https://websites.math.leidenuniv.nl/algebra/chebotarev.pdf

 http://math.stanford.edu/~conrad/斯坦福大学 代数,数论,代数几何等课程, http://math.stanford.edu/~conrad/

 https://core.ac.uk/download/pdf/81117031.pdf月形的构造和超越性, https://core.ac.uk/download/pdf/81117031.pdf

 https://www.famousmathematicians.net/famous-greek-mathematicians/古希腊15个最伟大的数学家

 https://www.britannica.com/biography/Hypatia希腊数学家希帕提娅, https://www.britannica.com/biography/Hypatia

 https://mathworld.wolfram.com/CissoidofDiocles.html蔓叶线,https://mathworld.wolfram.com/CissoidofDiocles.html

 https://www.worldhistory.org/article/606/greek-mathematics/希腊数学家, https://www.worldhistory.org/article/606/greek-mathematics/

 https://math.colorado.edu/~rohi1040/expository/eistranscendental.pdfe 是超越数, https://math.colorado.edu/~rohi1040/expository/eistranscendental.pdf

 https://math.ucr.edu/~res/math153/加州大学河滨分校数学史课程,https://math.ucr.edu/~res/math153/

 https://math.stackexchange.com/questions/4026332/equivalence-of-minor-epicycle-and-eccentric 离心率和均轮等价, https://math.stackexchange.com/questions/4026332/equivalence-of-minor-epicycle-and-eccentric

 http://brettcvz.github.io/epicycles/均轮的动画, http://brettcvz.github.io/epicycles/

 https://zhuanlan.zhihu.com/p/377472737本轮均轮模型, https://zhuanlan.zhihu.com/p/377472737

https://mathshistory.st-andrews.ac.uk/数学家传记, https://mathshistory.st-andrews.ac.uk

 https://mathworld.wolfram.com/Curvature.html曲率, https://mathworld.wolfram.com/Curvature.html

 https://www.britannica.com/science/history-of-science/Science-in-Rome-and-Christianity罗马和基督世界的科学史, https://www.britannica.com/science/history-of-science/Science-in-Rome-and-Christianity

 https://www.nationalgeographic.org/activity/technology-and-control-ancient-rome/古罗马技术发展和思想控制, https://www.nationalgeographic.org/activity/technology-and-control-ancient-rome/

 https://mathshistory.st-andrews.ac.uk/Education/rome/罗马的数学教育

 https://historycooperative.org/roman-republic-before-the-empire/共和政体的罗马

 https://www.worldhistory.org/collection/49/government-in-ancient-rome/古罗马的整体

 https://washingtoncitypaper.com/article/191885/how-did-anyone-do-math-in-roman-numerals/罗马人怎么数数

 https://hsm.stackexchange.com/questions/5460/why-are-there-no-known-roman-mathematicans-from-the-roman-empire为什么罗马帝国没有罗马本土数学家, https://hsm.stackexchange.com/questions/5460/why-are-there-no-known-roman-mathematicans-from-the-roman-empire

 http://gonnavis.com/timeline/历史时间线, http://gonnavis.com/timeline/

 https://prezi.com/jju7zqwb358c/mathematics-in-the-roman-empire/罗马帝国的数学-PPT, https://prezi.com/jju7zqwb358c/mathematics-in-the-roman-empire/

 https://www.worldhistory.org/article/897/the-phoenicians---master-mariners/海上的主人腓尼基人, https://www.worldhistory.org/article/897/the-phoenicians---master-mariners/

 https://omniglot.com/writing/phoenician.html腓尼基人, https://omniglot.com/writing/phoenician.html

 https://phoenicia.org/腓尼基信息汇总, https://phoenicia.org/

 https://zhuanlan.zhihu.com/p/193726723米底人及米底王国, https://zhuanlan.zhihu.com/p/193726723

 https://www.thepaper.cn/newsDetail_forward_19028939汉代以前的丝绸之路, https://www.thepaper.cn/newsDetail_forward_19028939

 https://zhuanlan.zhihu.com/p/339180341嚈哒人, https://zhuanlan.zhihu.com/p/339180341

 https://www.britannica.com/topic/Western-philosophy/Ancient-Greek-and-Roman-philosophy希腊罗马哲学, https://www.britannica.com/topic/Western-philosophy/Ancient-Greek-and-Roman-philosophy

 https://zhuanlan.zhihu.com/p/353200010古希腊的黑暗时代, https://zhuanlan.zhihu.com/p/353200010

 https://www.nasa.gov/image-feature/goddard/2021/hubble-sees-cosmic-quintuple/爱因斯坦环与阿波罗尼乌斯圆, https://www.nasa.gov/image-feature/goddard/2021/hubble-sees-cosmic-quintuple/

 https://forumgeom.fau.edu/FG2017volume17/FG201735.pdf阿波罗尼乌斯问题, https://forumgeom.fau.edu/FG2017volume17/FG201735.pdf

 https://www.britannica.com/science/history-of-science/The-rise-of-modern-science现代科学之起源, https://www.britannica.com/science/history-of-science/The-rise-of-modern-science

 文明的故事 威尔杜兰特 天地出版社 2018年

 中国通史. 作者: 吕思勉. 出版社: 中华书局. 出版年: 2020-7.

 百度百科:波斯帝国;塞琉古;唁哒人;萨珊帝国;高昌;亚述人;埃及历史;埃及第二十一王朝;多利安人;赫梯人;安纳托利亚半岛;米底人;赫梯;中王国时期;新王国时期;第三中间期时期;马其顿;多利安人;丢番图;卡拉卡拉敕令;吕底亚;斯基泰人;匈人;安得诺沃罗文明;伽色林王朝;奥古斯丁;第一次尼西亚会议;以佛所大公会议;三角形的“五心”;拉科尼亚;安提柯王朝;贵霜帝国;南北朝;蒙古;突厥;唐朝;汉朝;阿拉伯帝国;阿尤布王朝;哈里发;倭马亚;新巴比伦;高车;鲜卑;东胡;马其顿;澶渊之盟;亚历山大图书馆之焚毁;犹太人起源;巴列维语;突骑施汗国

 知乎专栏:世界民族文明史;伊朗历史;亚述,乌鲁克,巴比伦,苏美尔的关系

 必应:Partian; Persian Empire; Alexander Empire;Scyatha;Sassanid Empire;印度各王朝;eastern and western empire

Politics in Roman Empire;arab empire;difference between greek and roman empire;Persian Second;Plebis in Roman;Theodocious;Latus Rectum

 https://www.britannica.com/topic/Christianity大英百科全书之基督教, https://www.britannica.com/topic/Christianity

 https://zhuanlan.zhihu.com/p/499217933五度相生律、纯律和十二平均律的原理及计算方法, https://zhuanlan.zhihu.com/p/499217933

 https://arxiv.org/pdf/2305.06065.pdf阿波罗尼乌斯问题与椭圆接触, https://arxiv.org/pdf/2305.06065.pdf

 https://www.thepaper.cn/newsDetail_forward_14221574怛逻斯城与丝绸之路, https://www.thepaper.cn/newsDetail_forward_14221574 

 https://www.sohu.com/a/587027128_121119243张萍 | 唐王朝对楚河、塔拉斯谷地经营与中亚文化遗产, https://www.sohu.com/a/587027128_121119243 

 Music and Mathematics from Euclid to Fractals; Raymond Flood;2003.2.;Oxford Press.

ra https://www.thepaper.cn/newsDetail_forward_6585079焚毁亚历山大的原因, https://www.thepaper.cn/newsDetail_forward_6585079

 Chatgpt


给圆周率完整的一生第二讲-参考文献的评论 (共 条)

分享到微博请遵守国家法律