欢迎光临散文网 会员登陆 & 注册

【数学竞赛】用根轴解决一道国家队选拔赛题

2022-03-31 11:13 作者:Rotas-math_lover  | 我要投稿

额......千万别被封面吓到了,线没有那么多

题目来源:《几何分册》

一.问题引入

问题见下图

%EF%BC%882007%E5%9B%BD%E5%AE%B6%E9%98%9F%E9%80%89%E6%8B%94%E8%B5%9B%EF%BC%89%E5%B7%B2%E7%9F%A5AB%E6%98%AF%E2%8A%99O%E7%9A%84%E5%BC%A6%EF%BC%8CM%E6%98%AF%E5%BC%A7AB%E7%9A%84%E4%B8%AD%E7%82%B9%EF%BC%8CC%E6%98%AF%E2%8A%99O%E5%A4%96%E4%BB%BB%E4%B8%80%E7%82%B9%EF%BC%8C%5C%5C%0A%E8%BF%87%E7%82%B9C%E4%BD%9C%E2%8A%99O%E7%9A%84%E5%88%87%E7%BA%BFCS%20%E3%80%81CT%20%EF%BC%8C%E8%81%94%E7%BB%93%20MS%20%E3%80%81MT%E5%88%86%E5%88%AB%E4%BA%A4AB%E4%BA%8E%E7%82%B9E%E3%80%81F%EF%BC%8C%5C%5C%E8%BF%87%E7%82%B9E%E3%80%81F%20%E4%BD%9C%20AB%E7%9A%84%E5%9E%82%E7%BA%BF%EF%BC%8C%E5%88%86%E5%88%AB%E4%BA%A4OS%E3%80%81OT%E4%BA%8E%E7%82%B9X%E3%80%81Y%EF%BC%8C%5C%5C%E5%86%8D%E8%BF%87%E7%82%B9C%E4%BB%BB%E4%BD%9C%E2%8A%99O%E7%9A%84%E5%89%B2%E7%BA%BF%EF%BC%8C%E4%BA%A4%E2%8A%99O%E4%BA%8E%E7%82%B9P%E3%80%81Q%20%EF%BC%8C%E8%81%94%E7%BB%93MP%E4%BA%A4AB%E4%BA%8E%E7%82%B9R%EF%BC%8E%E8%AE%BEZ%E6%98%AFPQR%E7%9A%84%E5%A4%96%E5%BF%83%EF%BC%8E%5C%5C%E6%B1%82%E8%AF%81%EF%BC%9AX%E3%80%81Y%E3%80%81Z%20%E4%B8%89%E7%82%B9%E5%85%B1%E7%BA%BF%EF%BC%8E

初看这道题,是否有种被劝退的感觉?(大佬请无视)

现在,请读者多看几遍题(或者画一遍图)熟悉一下题目条件,下面我们来分析这道题

二.分析条件

首先题目中出现了一个弧中点M,这让人想到连接OM,由垂径定理就可以得到OM%E2%8A%A5AB,从而得到OM%2F%2FYF%2F%2FXE,就可以得到XE%3DXS%EF%BC%8CYF%3DYT

接下来以X为圆心XE为半径作圆,可以得到%5Codot%20X%5Codot%20O%0A内切,即CS%5Codot%20X相切,对Y也进行同样的操作,这样一来就可以很好地利用根轴的性质解题了,下面就是要找到根轴

三.发现模型

这里介绍一个有趣的构型,题目中出现的弧中点M,其向圆引了几条割线,下面把这个图抽出来分析

P为弧AB的中点

如图,可以看出,从弧中点P引出的两条割线与AB和圆的交点共圆,证明也不难,如下

%E8%AF%81%E6%98%8E%EF%BC%9A%E8%BF%9E%E6%8E%A5PB%E3%80%81BF%E3%80%81FA%5C%5C%0A%E7%94%B1P%E4%B8%BA%E5%BC%A7AB%E4%B8%AD%E7%82%B9%E5%8F%AF%E7%9F%A5%5Cangle%20PBA%3D%5Cangle%20PFA%3D%5Cangle%20PFB%5C%5C%0A%5CRightarrow%20%5Ctriangle%20PBE%5Csim%5Ctriangle%20PFB%5CRightarrow%20PB%5E2%3DPE%C2%B7PF%5C%5C%0A%E5%90%8C%E7%90%86%EF%BC%8CPA%5E2%3DPC%C2%B7PD%5CRightarrow%20PE%C2%B7PF%3DPC%C2%B7PD%EF%BC%8C%E5%8D%B3C%E3%80%81E%E3%80%81F%E3%80%81D%E5%85%B1%E5%9C%86

四.解决问题

那么,再看原图,可以发现什么呢

不难得到的是ME%C2%B7MS%3DMR%C2%B7MP,这说明点M%5Codot%20Z%5Codot%20X%0A的根轴上,而又由切割线定理CS%5E2%3DCP%C2%B7CQ,这说明点C也在%5Codot%20Z%5Codot%20X%0A的根轴上,所以MC%5Codot%20Z%5Codot%20X%0A的根轴,从而MC%E2%8A%A5XZ,那么接下来的说明就变得异常简单了

五.写出证明

下面给出完整的证明

%E8%AF%81%E6%98%8E%EF%BC%9A%E8%BF%9E%E6%8E%A5OM%EF%BC%8C%E6%98%93%E7%9F%A5OM%2F%2FXE%5C%5C%0A%E6%89%80%E4%BB%A5%5Cangle%20OSM%3D%5Cangle%20OMS%3D%5Cangle%20XES%5CRightarrow%20XE%3DXS%5C%5C%0A%E4%BB%A5X%E4%B8%BA%E5%9C%86%E5%BF%83XE%E4%B8%BA%E5%8D%8A%E5%BE%84%E4%BD%9C%5Codot%20X%EF%BC%8C%E5%88%99%5Codot%20X%E4%B8%8E%5Codot%20O%E7%9B%B8%E5%88%87%5CRightarrow%20CS%E4%B8%8E%5Codot%20X%E7%9B%B8%E5%88%87%5C%5C%0A%E8%BF%9E%E6%8E%A5MB%E3%80%81BP%E3%80%81PA%EF%BC%8C%E6%98%93%E8%AF%81%5Ctriangle%20MBR%5Csim%5Ctriangle%20MPB%5CRightarrow%20MB%5E2%3DME%C2%B7MS%5C%5C%0A%E5%90%8C%E7%90%86MA%5E2%3DMF%C2%B7MT%5CRightarrow%20MR%C2%B7MP%3DME%C2%B7MS%EF%BC%8C%E5%8D%B3%E7%82%B9M%E5%9C%A8%5Codot%20X%E5%92%8C%5Codot%20Z%E7%9A%84%E6%A0%B9%E8%BD%B4%E4%B8%8A%5C%5C%0A%E7%94%B1%E5%88%87%E5%89%B2%E7%BA%BF%E5%AE%9A%E7%90%86%E7%9F%A5CS%5E2%3DCP%C2%B7CQ%5CRightarrow%20%E7%82%B9C%E5%9C%A8%5Codot%20X%E5%92%8C%5Codot%20Z%E7%9A%84%E6%A0%B9%E8%BD%B4%E4%B8%8A%5C%5C%0A%E5%8D%B3MC%E6%98%AF%5Codot%20X%E5%92%8C%5Codot%20Z%E7%9A%84%E6%A0%B9%E8%BD%B4%5CRightarrow%20MC%E2%8A%A5XZ%5C%5C%0A%E5%90%8C%E7%90%86%EF%BC%8CMC%E2%8A%A5YZ%5CRightarrow%20X%E3%80%81Y%E3%80%81Z%E4%B8%89%E7%82%B9%E5%85%B1%E7%BA%BF

【数学竞赛】用根轴解决一道国家队选拔赛题的评论 (共 条)

分享到微博请遵守国家法律