欢迎光临散文网 会员登陆 & 注册

悬链线与双曲函数、反双曲函数(3)

2022-02-11 07:57 作者:匆匆-cc  | 我要投稿

        认识反双曲函数,我们也从一个熟悉的角度。

        在做奇偶函数题目中,一定有几个函数常常映入眼帘。

f(x)%3D%5Cln%5Cleft(x%2B%5Csqrt%7Bx%5E2%2B1%7D%5Cright)

g(x)%3D%5Cln%5Cleft(x%2B%5Csqrt%7Bx%5E2-1%7D%5Cright)

h(x)%3D%5Cfrac%7B1%7D%7B2%7D%5Cln%5Cfrac%7B1%2Bx%7D%7B1-x%7D

        容易证明,f(x)为奇函数,g(x)为非奇非偶函数函数,h(x)为奇函数。

        其实,这三个函数分别为反双曲正弦函数反双曲余弦函数反双曲正切函数

        分别记作

f(x)%3D%5Coperatorname%7Barsinh%7Dx%3D%5Cln%5Cleft(x%2B%5Csqrt%7Bx%5E2%2B1%7D%5Cright)

g(x)%3D%5Coperatorname%7Barcosh%7Dx%3D%5Cln%5Cleft(x%2B%5Csqrt%7Bx%5E2-1%7D%5Cright)

h(x)%3D%5Coperatorname%7Bartanh%7Dx%3D%5Cfrac%7B1%7D%7B2%7D%5Cln%5Cfrac%7B1%2Bx%7D%7B1-x%7D

    ## 注意:这里不是arc开头,而是ar开头,是因为这里ar表示area(面积),而不是arc(弧)。

        所以,这些名称是怎么来的?

        首先,我们需要了解双曲函数,可以参考以下链接。

        反双曲函数,顾名思义就是双曲函数的反函数

        那么,对于双曲正弦函数

y%3D%5Csinh%20x%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D

        取其反函数

x%3D%5Csinh%20y%3D%5Cfrac%7Be%5Ey-e%5E%7B-y%7D%7D%7B2%7D

        化简为关于e%5Ey的一元二次方程,得到

(e%5Ey)%5E2-2xe%5Ey-1%3D0

        解得

e%5Ey%3Dx%2B%5Csqrt%7Bx%5E2%2B1%7D

        或

e%5Ey%3Dx-%5Csqrt%7Bx%5E2%2B1%7D%EF%BC%88%5Ctextbf%7B%E8%88%8D%7D%EF%BC%89

        所以

y%3D%5Cln%20%5Cleft(x%2B%5Csqrt%7Bx%5E2%2B1%7D%5Cright)

        这就是反双曲正弦函数的表达式,记作

%5Coperatorname%7Barsinh%7Dx%3D%5Cln%5Cleft(x%2B%5Csqrt%7Bx%5E2%2B1%7D%5Cright)

        同样的,对于反双曲余弦函数

y%3D%5Ccosh%20x%3D%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D

        取其反函数

x%3D%5Ccosh%20y%3D%5Cfrac%7Be%5Ey%2Be%5E%7B-y%7D%7D%7B2%7D

        化简为关于e%5Ey的一元二次方程,得到

(e%5Ey)%5E2-2xe%5Ey%2B1%3D0

        解得

e%5Ey%3Dx%2B%5Csqrt%7Bx%5E2-1%7D

        或

e%5Ey%3Dx-%5Csqrt%7Bx%5E2-1%7D

        人为规定,取第一个等式成立。我们得到

y%3D%5Cln%5Cleft(x%2B%5Csqrt%7Bx%5E2-1%7D%5Cright)

        这就是反双曲余弦函数的表达式,记作

%5Coperatorname%7Barcosh%7Dx%3D%5Cln%5Cleft(x%2B%5Csqrt%7Bx%5E2-1%7D%5Cright)

    ## 事实上,其间关系如图所示。

        同样的,对于反双曲正切函数

y%3D%5Ctanh%20x%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7Be%5Ex%2Be%5E%7B-x%7D%7D

        取其反函数

x%3D%5Ctanh%20y%3D%5Cfrac%7Be%5Ey-e%5E%7B-y%7D%7D%7Be%5Ey%2Be%5E%7B-y%7D%7D

        化简为关于e%5Ey的一元二次方程,得到

(x-1)(e%5Ey)%5E2%2B(x%2B1)%3D0

        解得

e%5Ey%3D%5Csqrt%7B%5Cfrac%7B1%2Bx%7D%7B1-x%7D%7D

        或

e%5Ey%3D-%5Csqrt%7B%5Cfrac%7B1%2Bx%7D%7B1-x%7D%7D%EF%BC%88%5Ctextbf%7B%E8%88%8D%7D%EF%BC%89

        所以

y%3D%5Cfrac%7B1%7D%7B2%7D%5Cln%20%5Cfrac%7B1%2Bx%7D%7B1-x%7D

        这就是反双曲正切函数的表达式,记作

%5Coperatorname%7Bartanh%7Dx%3D%5Cfrac%7B1%7D%7B2%7D%5Cln%20%5Cfrac%7B1%2Bx%7D%7B1-x%7D

面积函数的由来

        反双曲函数,又称面积函数

        图中双曲线为

x%5E2-y%5E2%3D1

        过E点直线为

x%3Da

        考察图中双曲扇形ACBD的面积,我们发现

%5Cbegin%7Balign%7D%0AS%26%3D2%5Cleft(%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7Ba%5E2-1%7D%5Ccdot%20a-%5Cint_1%5Ea%5Csqrt%7Bx%5E2-1%7Ddx%5Cright)%0A%5C%5C%26%3Da%5Csqrt%7Ba%5E2-1%7D-2%5Ccdot%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bx%5Csqrt%7Bx%5E2-1%7D-%5Cln%5Cleft%5Cvert%20x%2B%5Csqrt%7Bx%5E2-1%7D%5Cright%5Cvert%5Cright%5D%7C%5Ea_1%0A%5C%5C%26%3Da%5Csqrt%7Ba%5E2-1%7D-%5Cleft%5Ba%5Csqrt%7Ba%5E2-1%7D-%5Cln%5Cleft(a%2B%5Csqrt%7Ba%5E2-1%7D%5Cright)%5Cright%5D%0A%5C%5C%26%3D%5Cln%5Cleft(a%2B%5Csqrt%7Ba%5E2-1%7D%5Cright)%0A%5C%5C%26%3D%5Coperatorname%7Barcosh%7Da%0A%5Cend%7Balign%7D

    ## 这里用到积分公式

%5Ccolor%7Bgray%7D%7B%5Cint%5Csqrt%7Bx%5E2-1%7Ddx%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Bx%5Csqrt%7Bx%5E2-1%7D-%5Cln%5Cleft%5Cvert%20x%2B%5Csqrt%7Bx%5E2-1%7D%5Cright%5Cvert%5Cright%5D%2BC%7D

        同时,我们有

CE%3Da%3D%5Ccosh%20S

S%3D%5Coperatorname%7Barcosh%7DCE

AE%3D%5Csqrt%7Ba%5E2-1%7D%3D%5Csqrt%7B%5Ccosh%5E2S-1%7D%3D%5Csinh%20S

S%3D%5Coperatorname%7Barsinh%7DAE

DF%3D%5Cfrac%7BAE%7D%7BCE%7D%5Ccdot1%3D%5Cfrac%7B%5Csinh%20S%7D%7B%5Ccosh%20S%7D%3D%5Ctanh%20S

S%3D%5Coperatorname%7Bartanh%7DDF

反双曲函数的导数

        来看反双曲正弦函数。

y%3D%5Coperatorname%7Barsinh%7Dx

x%3D%5Csinh%20y

1%3D%5Ccosh%20y%5Ccdot%5Cfrac%7Bdy%7D%7Bdx%7D

%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7B1%7D%7B%5Ccosh%20y%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1%2B%5Csinh%5E2%20y%7D%7D

    ## 这里%5Ccolor%7Bgray%7D%7B%5Ccosh%20y%3E0%7D

(%5Coperatorname%7Barsinh%7Dx)'%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D

%5Ccolor%7Bgray%7D%7B(%5Carcsin%20x)'%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1-x%5E2%7D%7D%7D

        再来看反双曲余弦函数。

y%3D%5Coperatorname%7Barcosh%7Dx

x%3D%5Ccosh%20y

1%3D%5Csinh%20y%5Ccdot%5Cfrac%7Bdy%7D%7Bdx%7D

%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7B1%7D%7B%5Csinh%20y%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B%5Ccosh%5E2%20y-1%7D%7D

    ## 这里%5Ccolor%7Bgray%7D%7By%3E0%2C%5Csinh%20y%3E0%7D

(%5Coperatorname%7Barcosh%7Dx)'%3D%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%5E2-1%7D%7D

%5Ccolor%7Bgray%7D%7B(%5Carccos%20x)'%3D-%5Cfrac%7B1%7D%7B%5Csqrt%7B1-x%5E2%7D%7D%7D

        再来看反双曲正切函数。

y%3D%5Coperatorname%7Bartanh%7Dx

x%3D%5Ctanh%20y

1%3D%5Cfrac%7B1%7D%7B%5Ccosh%5E2%20y%7D%5Ccdot%5Cfrac%7Bdy%7D%7Bdx%7D

%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Ccosh%5E2y%3D%5Cfrac%7B1%7D%7B1-%5Ctanh%5E2y%7D

(%5Coperatorname%7Bartanh%7Dx)'%3D%5Cfrac%7B1%7D%7B1-x%5E2%7D

%5Ccolor%7Bgray%7D%7B(%5Carctan%20x)'%3D%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%7D

        限于篇幅与繁复的计算,下面不加证明地给出剩余几个反双曲函数的定义及诸多相关式子。

%5Coperatorname%7Barcoth%7Dx%3D%5Cfrac%7B1%7D%7B2%7D%5Cln%20%5Cfrac%7Bx%2B1%7D%7Bx-1%7D

(%5Coperatorname%7Barcoth%7Dx)'%3D%5Cfrac%7B1%7D%7B1-x%5E2%7D

%5Ccolor%7Bgray%7D%7B(%5Coperatorname%7Barccot%7D%20x)'%3D-%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%7D

    ## 看起来和反双曲正切函数的导数相同,但两者定义域不同!

%5Coperatorname%7Barsech%7Dx%3D%5Cln%20%5Cfrac%7B1%2B%5Csqrt%7B1-x%5E2%7D%7D%7Bx%7D

(%5Coperatorname%7Barsech%7Dx)'%3D-%5Cfrac%7B1%7D%7Bx%5Csqrt%7B1-x%5E2%7D%7D

%5Ccolor%7Bgray%7D%7B(%5Coperatorname%7Barcsec%7D%20x)'%3D%5Cfrac%7B1%7D%7B%7Cx%7C%5Csqrt%7Bx%5E2-1%7D%7D%7D

%5Coperatorname%7Barcsch%7Dx%3D%5Cln%20%5Cleft(%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%7B%7Cx%7C%7D%5Cright)

(%5Coperatorname%7Barcsch%7Dx)'%3D-%5Cfrac%7B1%7D%7B%7Cx%7C%5Csqrt%7B1%2Bx%5E2%7D%7D

%5Ccolor%7Bgray%7D%7B(%5Coperatorname%7Barccsc%7D%20x)'%3D-%5Cfrac%7B1%7D%7B%7Cx%7C%5Csqrt%7Bx%5E2-1%7D%7D%7D


        另外,我们有

%5Coperatorname%7Bartanh%7Dx%3Dx%2B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E5%7D%7B5%7D%2B%5Cfrac%7Bx%5E7%7D%7B7%7D%2B%E2%80%A6

悬链线与双曲函数、反双曲函数(3)的评论 (共 条)

分享到微博请遵守国家法律