欢迎光临散文网 会员登陆 & 注册

复旦大学谢启鸿高等代数每周一题[2021A04]参考解答

2021-10-27 18:12 作者:CharlesMa0606  | 我要投稿

本文是本人给出的2021年复旦大学谢启鸿高等代数的每周一题[问题2021A04]的解答

题目来自于复旦大学谢启鸿教授在他的博客提供的每周一题练习

(链接:https://www.cnblogs.com/torsor/p/15329047.html)

本文仅供学习交流,如有错误恳请指正!

[问题2021A04]求下列行列式的值:

%5Cleft%7CA%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%2Bn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5Ca_1%2Ba_3%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C

(解法一,拆分、降阶公式,计算量较大)

1°当a_i%5Cneq0%2C%5Cforall2%5Cle%20i%5Cle%20n时我们对%7CA%7C的第一列进行拆分,有:

%5Cleft%7CA%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5Ca_1%2Ba_3%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%2B%5Cleft%7C%5Cbegin%7Bmatrix%7Dn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5C0%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5C0%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C0%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C.

先计算前一项,将其记作%7CB%7C,则:

%5Cleft%7CB%5Cright%7C%3D%5Cleft%7C%5Cleft(%5Cbegin%7Bmatrix%7Da_1%5E2%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%260%26%5Ccdots%260%5C%5Ca_1%2Ba_3%260%26a_3%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%260%260%26%5Ccdots%26a_n%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright)-%5Cleft(%5Cbegin%7Bmatrix%7D0%5C%5C1%5C%5C1%5C%5C%5Cvdots%5C%5C1%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cleft(-I_1%5Cright)%5Cleft(%5Cbegin%7Bmatrix%7D0%261%261%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cright%7C

%3D%5Cfrac%7B1%7D%7B%5Cleft%7C-I_1%5Cright%7C%7D%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%260%26%5Ccdots%260%5C%5Ca_1%2Ba_3%260%26a_3%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%260%260%26%5Ccdots%26a_n%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%5Cleft%7C-I_1-%5Cleft(%5Cbegin%7Bmatrix%7D0%261%261%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cleft(%5Cast%5Cright)%5E%7B-1%7D%5Cleft(%5Cbegin%7Bmatrix%7D0%5C%5C1%5C%5C1%5C%5C%5Cvdots%5C%5C1%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cright%7C

而利用递推法可以求出

%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%260%26%5Ccdots%260%5C%5Ca_1%2Ba_3%260%26a_3%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%260%260%26%5Ccdots%26a_n%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3Da_1%5E2%5Ccdots%20a_n%5E2-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%7Ba_2%5E2%5Ccdots%5Cwidehat%7Ba_i%5E2%7D%5Cleft(a_1%2Ba_i%5Cright)%5E2%5Ccdots%20a_n%5E2%7D.

注意到只需要求出逆阵的后n-1行、后n-1列元素的和即可,从而

%5Cleft%7CB%5Cright%7C%3D%5Cleft(a_1%5E2-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B%5Cleft(a_1%2Ba_i%5Cright)%5E2%7D%7Ba_i%5E2%7D%5Cright)%5Cleft(1%2B%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%2B%5Cfrac%7B%5Cleft(%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7Ba_1%2Ba_i%7D%7Ba_i%5E2%7D%5Cright)%5E2%7D%7Ba_1%5E2-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B%5Cleft(a_1%2Ba_i%5Cright)%5E2%7D%7Ba_i%5E2%7D%7D%5Cright)%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

%3D%5Cleft%5B%5Cleft(a_1%5E2-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B%5Cleft(a_1%2Ba_i%5Cright)%5E2%7D%7Ba_i%5E2%7D%5Cright)%5Cleft(1%2B%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%5Cright)%2B%5Cleft(%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7Ba_1%2Ba_i%7D%7Ba_i%5E2%7D%5Cright)%5E2%5Cright%5D%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

%3D%5Cleft%5Ba_1%5E2-2a_1%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D-%5Cleft(n-1%5Cright)-%5Cleft(%5Cleft(n-1%5Cright)%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%5Cright)%2B%5Cleft(%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D%5Cright)%5E2%5Cright%5D%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

%3D%5Cleft%5B%5Cleft(a_1-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D%5Cright)%5E2-%5Cleft(n-1%5Cright)%5Cleft(1%2B%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%5Cright)%5Cright%5D%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

再计算后一项,将其记作%7CC%7C,有:

%5Cleft%7CC%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Dn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5C0%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5C0%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C0%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3D%5Cleft(n-1%5Cright)%5Cleft%7C%5Cbegin%7Bmatrix%7Da_2%5E2%2B1%261%261%26%5Ccdots%261%5C%5C1%26a_3%5E2%2B1%261%26%5Ccdots%261%5C%5C1%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C

%3D%5Cleft(n-1%5Cright)%5Cleft(%5Cleft%7C%5Cbegin%7Bmatrix%7Da_2%5E2%260%260%26%5Ccdots%260%5C%5C0%26a_3%5E2%260%26%5Ccdots%260%5C%5C0%260%26a_4%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C0%260%260%26%5Ccdots%26a_n%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%2B%5Csum_%7Bi%2Cj%3D1%7D%5E%7Bn%7DC_%7Bij%7D%5Cright)%3D%5Cleft(n-1%5Cright)%5Cleft(1%2B%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%5Cright)%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

从而

%5Cleft%7CA%5Cright%7C%3D%5Cleft(a_1-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D%5Cright)%5E2%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2.%5Cleft(a_i%5Cneq0%5Cright)

2°当有且只有一个a_i%3D0%2C2%5Cle%20i%5Cle%20n时我们可以做行对换和列对换把它换到右下角,从而不妨只研究a_n%3D0的情况,其余情况同理,我们有:

%5Cleft%7CA%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%2Bn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%5C%5Ca_1%2Ba_2%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5Ca_1%2Ba_3%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%261%261%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Dn-1%26a_2%26a_3%26%5Ccdots%26a_%7Bn-1%7D%5C%5Ca_2%26a_2%5E2%260%26%5Ccdots%260%5C%5Ca_3%260%26a_3%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_%7Bn-1%7D%260%260%26%5Ccdots%26a_%7Bn-1%7D%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C

%3D%5Cprod_%7Bi%3D2%7D%5E%7Bn-1%7Da_i%5E2%5Cleft%7C%5Cbegin%7Bmatrix%7Dn-1%261%261%26%5Ccdots%261%5C%5C1%261%260%26%5Ccdots%260%5C%5C1%260%261%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%260%260%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3D%5Cprod_%7Bi%3D2%7D%5E%7Bn-1%7Da_i%5E2%5Cleft%7C%5Cbegin%7Bmatrix%7D1%261%261%26%5Ccdots%261%5C%5C0%261%260%26%5Ccdots%260%5C%5C0%260%261%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C0%260%260%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3D%5Cprod_%7Bi%3D2%7D%5E%7Bn-1%7Da_i%5E2

3°当有不少于两个a_i%3D0%2C2%5Cle%20i%5Cle%20n时,有两行相同,从而%7CA%7C%3D0.

%5BQ.E.D%5D

(解法二,矩阵乘法,计算量非常小,但较难想到)

注意到

A%3D%5Cleft(%5Cbegin%7Bmatrix%7Da_1%5E2%2Bn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5Ca_1%2Ba_3%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright)%3D%5Cleft(%5Cbegin%7Bmatrix%7Da_1%261%261%26%5Ccdots%261%5C%5C1%26a_2%260%26%5Ccdots%260%5C%5C1%260%26a_3%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%260%260%26%5Ccdots%26a_n%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5E2

从而由爪形行列式的相关结论,立即得到

%5Cleft%7CA%5Cright%7C%3D%5Cleft(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Da_i-%5Csum_%7Bk%3D2%7D%5E%7Bn%7D%7Ba_2%5Ccdots%5Cwidehat%7Ba_k%7D%5Ccdots%20a_n%7D%5Cright)%5E2%3D%5Cleft(a_1-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D%5Cright)%5E2%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2.

%5BQ.E.D%5D

(1)本专栏给出了本题的拆分、降阶公式和矩阵乘法的两种做法,其中降阶公式法较考验计算能力,同时思维含量也不低,可以称得上是硬核做法;矩阵乘法的做法非常巧妙,需要极强的创造力和观察力,非常有灵性.

(2)文末附上图片格式的解法,有需要的读者可以自行取用,仅供学习交流

问题2021A04-第一页
问题2021A04-第二页



复旦大学谢启鸿高等代数每周一题[2021A04]参考解答的评论 (共 条)

分享到微博请遵守国家法律