AI安全:技术与实战
链接:https://pan.baidu.com/s/1UI_huxf4BjLpO2tZrM3VwQ?pwd=6g1g
提取码:6g1g

● 国内首部揭秘AI安全【前沿技术】图书,【腾讯安全朱雀实验室】首著。
● 前沿【攻击方法和原理】分析,原汁原味【实战案例】呈现。
● 全书涵盖6大主题14个实战案例,包括对抗样本攻击、数据投毒攻击、模型后门攻击、预训练模型安全、AI数据隐私窃取、AI应用失控风险等。
● 附赠全书实战代码,作者在线答疑等增值服务。
● 全彩极致印刷,最佳视觉体验。
内容简介
● 本书首先介绍AI与AI安全的发展起源、世界主要经济体的AI发展战略规划,给出AI安全技术发展脉络和框架,并从AI安全实战出发,重点围绕对抗样本、数据投毒、模型后门等攻击技术进行案例剖析和技术讲解;然后对预训练模型中的风险和防御、AI数据隐私窃取攻击技术、AI应用失控的风险和防御进行详细分析,并佐以实战案例和数据;最后对AI安全的未来发展进行展望,探讨AI安全的风险、机遇、发展理念和产业构想。
● 本书适合AI和AI安全领域的研究人员、管理人员,以及需要实战案例辅助学习的广大爱好者阅读。
作者简介
腾讯安全朱雀实验室专注于AI安全技术研究及应用,围绕对抗机器学习、AI模型安全、深伪检测等方面取得了一系列研究成果,议题入选CVPR、ICLR、CanSecWest、HITB、POC、XCon等国内外顶级会议,面向行业发布了业内第一个AI安全威胁风险矩阵,持续聚焦AI在产业应用的安全问题,助力AI安全技术创新。
精彩书评
人工智能(AI)被认为是引领第四次工业革命进入智能化时代的核心驱动技术。AI理论和技术日益成熟,应用领域也被不断扩大,它改变了数字、物理和生物世界,形成了我称为的“虚实集成世界”(Integrated Physical-Digital World,IPhD)。毫无疑问,AI正在帮助各行各业实现智能化升级,并创造很多新的机会。
我相信AI将带给我们更美好的未来。但我们也清楚地认识到,这一波的AI技术主要是基于深度学习的系统,非常依赖于大模型、大数据和云服务。AI大模型参数多、可解释性差,比较容易遭到对抗样本攻击;大数据噪声大,质量难保证,可能引来攻击者数据投毒;云服务虽然给我们提供了便宜的算力和便捷的生活,但也给攻击者提供了便利,造成隐私窃取和应用失控。
我在腾讯的同事——朱雀实验室的小伙伴们,从2019年开始研究AI安全,涉及模型安全、AI滥用、AI伦理等,同时也在构建和完善AI安全蓝图,并将这些技术和应用落地。这本书凝聚了他们在AI安全技术的研究和实践中积累的多年经验。我相信他们踩过的“坑”和成功的案例将对AI安全领域的研究人员和管理人员带来极大的帮助。
——张正友 腾讯首席科学家、腾讯AI Lab和腾讯Robotics X实验室主任
由于硬件和算法的快速发展,以深度学习为代表的各类人工智能技术已经被广泛用于人脸识别、自动驾驶、物联网等各类重要应用中。由于其内生的脆弱性,人工智能技术的发展往往也会带来新的安全问题。然而,人工智能技术的内源安全性问题往往无法通过传统信息安全的技术来直接解决。因此,系统性地研究人工智能技术中可能存在的安全性问题和其对应的解决方案具有重要意义。
人工智能内源安全性问题的相关探索可以追溯到20世纪中叶对各类传统机器学习算法鲁棒性和稳定性的研究。近代人工智能内源安全性研究主要针对于以深度神经网络为代表的深度学习。这些相关研究主要围绕深度学习模型,从数据采集、模型训练、模型部署和模型预测等模型全生命周期展开,其目的主要是为了误导模型的预测导致出现安全性威胁或窃取用户隐私。误导模型输出的相关研究包括数据投毒、后门攻击、对抗攻击、深度伪造等。在用户隐私的窃取方面,相关研究包括成员推断、属性推断、深度梯度泄露等。这些新兴的安全威胁给使用人工智能技术的相关算法和系统带来了新的重要挑战。
目前,有关人工智能安全的专著国内并不是很多。此次腾讯安全朱雀实验室编著的《AI安全:技术与实战》从实际应用场景的视角出发,除了以简要的方式回顾了人工智能安全的各项重要技术,还提供了包括代码在内的多个具有代表性的实战案例。本书既可作为教材供高年级本科生和研究生学习,也可作为白皮书供从事与人工智能技术相关的研究人员、开发人员和管理人员,以及广大人工智能爱好者们查阅。相信本书提供的实战案例能够帮助读者更加快速、深入地了解人工智能安全的各项技术在实际应用场景下的具体部署和应用。
——江勇 清华大学教授