欢迎光临散文网 会员登陆 & 注册

拓端tecdat|R语言ARIMA集成模型预测时间序列分析

2021-06-25 23:06 作者:拓端tecdat  | 我要投稿

原文链接:http://tecdat.cn/?p=18493

原文出处:拓端数据部落公众号

 

本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。

我们使用以下数据



  1. k=620

  2. n=nrow(elec)

  3. futu=(k+1):n

  4. y=electricite$Load[1:k]

  5. plot(y,type="l")


 

我们开始对温度序列进行建模(温度序列对电力负荷的影响很大)



  1. y=Temp

  2. plot(y,type="l")


 



  1. abline(lm(y[ :k]~y[( :k)-52]),col="red")





 

 

时间序列是自相关的,在52阶



  1. acf(y,lag=120)




 

 



  1. model1=auto.arima(Y)

  2. acf(residuals(model1),120)




我们将这个模型保存在工作空间中,然后查看其预测。让我们在这里尝试一下SARIMA



  1. arima(Y,order = c(0,0,0),

  2. seasonal = list(order = c(1,0,0)))





然后让我们尝试使用季节性单位根



  1. Z=diff(Y,52)

  2. arima(Z,order = c(0,0,1),

  3. seasonal = list(order = c(0,0,1)))




然后,我们可以尝试Buys-Ballot模型



  1. lm(Temp~0+as.factor(NumWeek),





 

对模型进行预测



  1. plot(y,type="l",xlim=c(0,n )

  2. abline(v=k,col="red")

  3. lines(pre4,col="blue")




 



  1. plot(y,type="l",xlim=c(0,n))

  2. abline(v=k,col="red")




 

 



  1. plot(y,type="l",xlim=c(0,n))




 

 



  1. plot(y,type="l",xlim=c(0,n))

  2. abline(v=k,col="red")




 

最后比较4个模型的结果



  1. lines( MODEL$y1,col="

  2. lines( MODEL$y2,col="green")

  3. lines( MODEL$y3,col="orange")

  4. lines( MODEL$y4,col="blue")




 

然后,我们可以尝试加权平均值来优化模型,而不是找出四个中的哪一个模型是“最优”,y ^ T = ∑iωiy ^ t(i)其中ω=(ωi),ω1+ ... +ωk= 1。然后,我们想要找到“最佳”权重。我们将在第一个m值上校准我们的四个模型,然后比较下111个值(和真实值)的预测组合,

 

我们使用前200个值。

然后,我们在这200个值上拟合4个模型

然后我们进行预测



  1. y1=predict(model1,n.ahead = 111)$pred,

  2. y2=predict(model2,n.ahead = 111)$pred,

  3. y3=predict(model3,n.ahead = 111)$pred,

  4. y4=predict(model4,n.ahead = 111)$pred+




为了创建预测的线性组合,我们使用



  1. a=rep(1/4,4)

  2. y_pr = as.matrix(DOS[,1:4]) %*% a




因此,我们可视化这4个预测,它们的线性组合(带有等权重)及其观察值

为了找到权重的“最佳”值,最小化误差平方和,我们使用以下代码



  1. function(a) sum( DONN[,1:4  %*% a-DONN[,5 )^2





我们得到最优权重



  1. optim(par=c(0,0,0),erreur2)$par





然后,我们需要确保两种算法的收敛性:SARIMA参数的估计算法和权重参数的研究算法。



  1. if(inherits(TRY, "try-error")   arima(y,order = c(4,0,0)

  2. seasonal = list(order = c(1,0,0)),method="CSS")






然后,我们查看权重随时间的变化。

获得下图,其中粉红色的是Buys-Ballot,粉红色的是SARIMA模型,绿色是季节性单位根,



  1. barplot(va,legend = rownames(counts)




 

我们发现权重最大的模型是Buys Ballot模型。

可以更改损失函数,例如,我们使用90%的分位数,



  1. tau=.9

  2. function(e) (tau-(e<=0))*e




在函数中,我们使用

 

 

这次,权重最大的两个模型是SARIMA和Buys-Ballot。

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.使用r语言进行时间序列(arima,指数平滑)分析

4.r语言多元copula-garch-模型时间序列预测

5.r语言copulas和金融时间序列案例

6.使用r语言随机波动模型sv处理时间序列中的随机波动

7.r语言时间序列tar阈值自回归模型

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.python3用arima模型进行时间序列预测

 


拓端tecdat|R语言ARIMA集成模型预测时间序列分析的评论 (共 条)

分享到微博请遵守国家法律