欢迎光临散文网 会员登陆 & 注册

第三定义——“积”与“商”转化的绝佳利器(2023新高考Ⅱ圆锥曲线)

2023-06-08 19:32 作者:数学老顽童  | 我要投稿

(2023新高考Ⅱ,21)已知双曲线C的中心为坐标原点,左焦点为%5Cleft(%20-2%5Csqrt%7B5%7D%2C0%20%5Cright)%20,离心率为%5Csqrt%7B5%7D.

(1)求C的方程;

(2)记C的左、右顶点分别为A_1A_2,过点%5Cleft(%20-4%2C0%20%5Cright)%20的直线与C的左支交于MN两点,M在第二象限,直线MA_1NA_2交于P,证明:点P在定直线上.

解:(1)设由题可知c%3D2%5Csqrt%7B5%7D

又因为%5Cfrac%7Bc%7D%7Ba%7D%20%3D%5Csqrt%7B5%7D%20

所以a%3D2

所以b%5E2%20%3Dc%5E2-a%5E2%3D16,

所以C的方程为%5Ccolor%7Bred%7D%7B%5Cfrac%7Bx%5E2%7D%7B4%7D-%5Cfrac%7By%5E2%7D%7B16%7D%3D1%7D.

(2)

设过%5Cleft(%20-4%2C0%20%5Cright)%20的直线l的方程为:

m%5Cleft(%20x%2B2%20%5Cright)%20%2Bny%3D1

因其过%5Cleft(%20-4%2C0%20%5Cright)%20,故有

m%5Cleft(%20-4%2B2%20%5Cright)%20%2Bn%5Ccdot%200%3D1

解得m%3D-%5Cfrac%7B1%7D%7B2%7D

l的方程为%5Ccolor%7Bred%7D%7B-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x%2B2%20%5Cright)%20%2Bny%3D1%7D.

C的方程可变形为

%5Cfrac%7B%5Cleft(%20x%2B2%20%5Cright)%20%5E2-4x-4%7D%7B4%7D-%5Cfrac%7By%5E2%7D%7B16%7D%3D1

%5Ccolor%7Bred%7D%7B%5Cfrac%7B%5Cleft(%20x%2B2%20%5Cright)%20%5E2%7D%7B4%7D-%5Cleft(%20x%2B2%20%5Cright)%20-%5Cfrac%7By%5E2%7D%7B16%7D%3D0%7D

l联立得:

%5Cfrac%7B%5Cleft(%20x%2B2%20%5Cright)%20%5E2%7D%7B4%7D-%5Cleft(%20x%2B2%20%5Cright)%20%5Cleft%5B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x%2B2%20%5Cright)%20%2Bny%20%5Cright%5D%20-%5Cfrac%7By%5E2%7D%7B16%7D%3D0

展开

%5Cfrac%7B%5Cleft(%20x%2B2%20%5Cright)%20%5E2%7D%7B4%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x%2B2%20%5Cright)%20%5E2-n%5Cleft(%20x%2B2%20%5Cright)%20y-%5Cfrac%7By%5E2%7D%7B16%7D%3D0

并项

%5Cfrac%7B3%7D%7B4%7D%5Cleft(%20x%2B2%20%5Cright)%20%5E2-n%5Cleft(%20x%2B2%20%5Cright)%20y-%5Cfrac%7By%5E2%7D%7B16%7D%3D0

各项同除以%5Cleft(%20x%2B2%20%5Cright)%20%5E2,得

%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7B16%7D%5Cleft(%20%5Cfrac%7By%7D%7Bx%2B2%7D%20%5Cright)%20%5E2%2Bn%5Ccdot%20%5Cfrac%7By%7D%7Bx%2B2%7D-%5Cfrac%7B3%7D%7B4%7D%3D0%7D

%5Ccolor%7Bred%7D%7Bk_%7BMA_1%7D%5Ccdot%20k_%7BNA_1%7D%3D%7D%5Cfrac%7B-%5Cfrac%7B3%7D%7B4%7D%7D%7B%5Cfrac%7B1%7D%7B16%7D%7D%3D%5Ccolor%7Bred%7D%7B-12%7D.……(%5Coplus%20

因为N%5Cleft(%20x_2%2Cy_2%20%5Cright)%20C上,故

%5Cfrac%7Bx_%7B2%7D%5E%7B2%7D%7D%7B4%7D-%5Cfrac%7By_%7B2%7D%5E%7B2%7D%7D%7B16%7D%3D1

变形得%5Cfrac%7By_%7B2%7D%5E%7B2%7D%7D%7B16%7D%3D%5Cfrac%7Bx_%7B2%7D%5E%7B2%7D%7D%7B4%7D-1

%5Cfrac%7By_%7B2%7D%5E%7B2%7D%7D%7B16%7D%3D%5Cfrac%7Bx_%7B2%7D%5E%7B2%7D-4%7D%7B4%7D

%5Cfrac%7By_%7B2%7D%5E%7B2%7D%7D%7Bx_%7B2%7D%5E%7B2%7D-4%7D%3D4

%5Cfrac%7By_2%7D%7Bx_2%2B2%7D%5Ccdot%20%5Cfrac%7By_2%7D%7Bx_2-2%7D%3D4

%5Ccolor%7Bred%7D%7Bk_%7BNA_1%7D%5Ccdot%20k_%7BNA_2%7D%3D4%7D……(%5Cotimes%20

(此即双曲线之第三定义)

%5Coplus%20%5Cotimes%20可知:%5Ccolor%7Bred%7D%7B%5Cfrac%7Bk_%7BMA_1%7D%7D%7Bk_%7BNA_2%7D%7D%3D-3%7D

%5Ccolor%7Bred%7D%7B%5Cfrac%7Bk_%7BPA_1%7D%7D%7Bk_%7BPA_2%7D%7D%3D-3%7D

%5Ccolor%7Bred%7D%7B%5Cfrac%7B%5Cfrac%7By_P%7D%7Bx_P%2B2%7D%7D%7B%5Cfrac%7By_P%7D%7Bx_P-2%7D%7D%3D-3%7D

解得%5Ccolor%7Bred%7D%7Bx_%7BP%7D%20%3D-1%7D

故点P在定直线%5Ccolor%7Bred%7D%7Bx%3D-1%7D上.

第三定义——“积”与“商”转化的绝佳利器(2023新高考Ⅱ圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律