欢迎光临散文网 会员登陆 & 注册

[Algebra] Product of Two Negative Numbers

2021-07-16 13:22 作者:AoiSTZ23  | 我要投稿

 By: Tao Steven Zheng (郑涛)

【Problem】

Prove why the product of two negative real numbers is a positive real number.

【Solution】

Let a%2Cb  be two positive real numbers; subsequently, -a and -b are their respective additive inverses.

A clever way to prove that (-a)(-b)%3Dab is to begin by considering the equation

x%3Dab%2B(-a)(b)%2B(-a)(-b)

and then use this equation to show that x%3Dab%20 and x%3D(-a)(-b).


First, factor out -a from the expression (-a)(b)%2B(-a)(-b):

x%3Dab%2B(-a)(b)%2B(-a)(-b)

x%3Dab%2B(-a)%5Bb%2B(-b)%5D

Since b%2B(-b)%3D0,

x%20%3D%20ab%20%2B%20(-a)(0)

Thus,

x%3Dab

Now, with the original equation, factor out b from the expression ab%2B(-a)(b):

x%3Dab%2B(-a)(b)%2B(-a)(-b)

x%3Db%5Ba%2B(-a)%5D%2B(-a)(-b)

x%3Db(0)%2B(-a)(-b)

Thus,

x%3D(-a)(-b)

Since  x%3Dab%20 and x%3D(-a)(-b), we discover that 

(-a)(-b)%20%3D%20ab

Therefore, the product of two negative numbers is positive.




[Algebra] Product of Two Negative Numbers的评论 (共 条)

分享到微博请遵守国家法律