欢迎光临散文网 会员登陆 & 注册

2022年高考全国甲卷&新高考Ⅱ卷导数大题

2022-06-09 12:34 作者:子瞻Louis  | 我要投稿

今年高考题想必大家都已经看过了,up只看了导数题,然后挑了两个简单的做了一下,就是全国甲卷的和新高考Ⅱ卷的。

其实今年甲卷的导数题难度并不大,只不过一开始up也没想到方法,看了别人的提示后才做出来。那么本期就来详细解析一下今年的全国甲卷和新高考Ⅱ卷的导数题吧

全国甲卷

题目:已知 f(x)%3D%5Cfrac%7Be%5Ex%7D%7Bx%7D-%5Cln%20x%2Bx-a

  1. 若 f(x)%5Cge0 ,求 a 的范围;

  2. 若 f(x) 有两个不同的零点 x_1%2Cx_2 ,求证 x_1x_2%3C1 .

读者可以先试着自己做一做


那么,下面正式开始了

第一问

这一问没什么难度,先求导,得

f'(x)%3D%5Cfrac%7B(x-1)e%5Ex%7D%7Bx%5E2%7D-%5Cfrac1x%2B1

令 f'(x)%3D0 ,得

(x-1)(e%5Ex%2Bx)%3D0

即解得 x%3D1 ,又由于 f''(1)%3De%2B1%3E0 ,所以 f(x)%5Cge%20f(1)%3De%2B1-a%5Cge0 ,因此 a%5Cle%20e%2B1 .

第二问

首先不妨假设 x_1%3Ex_2 ,引入一个熟知的不等式,叫做对数均值不等式(ALG inequality)

%5Csqrt%7Bx_1x_2%7D%3C%5Cfrac%7Bx_1-x_2%7D%7B%5Cln%20x_1-%5Cln%20x_2%7D

作为一名善良的人道主义者(雾),这里还是会先证明这个不等式,令 z%3D%5Cfrac%7Bx_1%7D%7Bx_2%7D%3E1 ,可以将上式转化为证明

g(z)%3D%5Csqrt%20z-%5Cfrac1%7B%5Csqrt%20z%7D-%5Cln%20z%3E0

由于 

%5Cbegin%7Balign%7Dg'(z)%26%3D%5Cfrac1%7B2%5Csqrt%20z%7D%2B%5Cfrac1%7B2%5Csqrt%7Bz%5E3%7D%7D-%5Cfrac1z%5C%5C%26%3D%5Cfrac1%7B2z%7D%5Cleft(%5Csqrt%20z%2B%5Cfrac1%7B%5Csqrt%20z%7D-2%5Cright)%5Cge0%5Cend%7Balign%7D

上式仅当 z%3D1 时取等,因此  g(z)%5Cge%20g(1)%3D0 ,而 z%3E1 ,所以 g(z)%3E0 ,然后就完成了对数均值不等式的证明。现在回到题目,有

%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Brcl%7D%20%5Cfrac%7Be%5E%7Bx_1%7D%7D%7Bx_1%7D-%5Cln%20x_1%2Bx_1%3Da%5C%5C%5Cfrac%7Be%5E%7Bx_2%7D%7D%7Bx_2%7D-%5Cln%20x_2%2Bx_2%3Da%20%5Cend%7Barray%7D%5Cright.

由此可得

%5Cfrac%7Be%5E%7Bx_1%7D%7D%7Bx_1%7D-%5Cln%20x_1%2Bx_1%3D%5Cfrac%7Be%5E%7Bx_2%7D%7D%7Bx_2%7D-%5Cln%20x_2%2Bx_2

稍微变换一下,得到

e%5E%7B%5Ccolor%7Bred%7D%7Bx_1-%5Cln%20x_1%7D%7D%2B%5Ccolor%7Bred%7D%7Bx_1-%5Cln%20x_1%7D%3De%5E%7B%5Ccolor%7Bblue%7D%7Bx_2-%5Cln%20x_2%7D%7D%2B%5Ccolor%7Bblue%7D%7Bx_2-%5Cln%20x_2%7D

根据 e%5Ex%2Bx 的单调性可知

x_1-%5Cln%20x_1%3Dx_2-%5Cln%20x_2

由此可得

x_1x_2%3C%5Cleft(%5Cfrac%7Bx_1-x_2%7D%7B%5Cln%20x_1-%5Cln%20x_2%7D%5Cright)%5E2%3D1

Q.E.D.


嗯,相信读者看完后也会觉得很简单吧。那么不妨再来看一道题吧


新高考Ⅱ卷

题目:已知 f(x)%3Dxe%5E%7Bax%7D-e%5Ex

  1. 当 a%3D1 时,讨论 f(x) 的单调性;

  2. 当 x%3E0 时,若 f(x)%3C-1 ,求 a 的范围

  3. 设 n 为正整数,求证 %5Cfrac1%7B%5Csqrt%7B1%5E2%2B1%7D%7D%2B%5Cfrac1%7B%5Csqrt%7B2%5E2%2B2%7D%7D%2B%5Cdots%2B%5Cfrac1%7B%5Csqrt%7Bn%5E2%2Bn%7D%7D%3E%5Cln(n%2B1)

同样,读者可以先试着自己做一做


第一问

直接导,得

f'(x)%3Dxe%5Ex

显然当 x%3E0 时 f(x) 单调递增,x%3C0 时单调递减,有极小值 f(0)%3D-1

第二问(非常规解法)

此方法千万不能在高考使用

先分参,得

a%3C%5Cfrac%7B%5Cln(e%5Ex-1)-%5Cln%20x%7D%7Bx%7D%3Dg(x)

将它稍微改写一下

%5Cbegin%7Baligned%7Dg(x)%26%3D1%2B%5Cfrac1x%5Cint_0%5Ex%5Cleft(%5Cfrac%7B1%7D%7Be%5Et-1%7D-%5Cfrac1t%5Cright)%5Cmathrm%20dt%5C%5C%26%3D1%2B%5Cint_0%5E1%5Cleft(%5Cfrac1%7Be%5E%7Bxt%7D-1%7D-%5Cfrac1%7Bxt%7D%5Cright)%5Cmathrm%20dt%5Cend%7Baligned%7D

求导,得

g'(x)%3D%5Cint_0%5E1t%5Cleft%5C%7B%5Cfrac1%7Bx%5E2t%5E2%7D-%5Cfrac%7Be%5E%7Bxt%7D%7D%7B(e%5E%7Bxt%7D-1)%5E2%7D%5Cright%5C%7D%5Cmathrm%20dt%3D%5Cint_0%5E1%20tp(xt)%5Cmathrm%20dt

其中

p(z)%3D%5Cfrac1%7Bz%5E2%7D-%5Cfrac%7Be%5E%7Bz%7D%7D%7B(e%5E%7Bz%7D-1)%5E2%7D

有 p(z)%5Cge0%5Cquad(z%3E0)%20%5CRightarrow%20g'(x)%5Cge0%5Cquad(x%3E0) ,因此欲证 g'(x)%5Cge0 只需证明

%5Cfrac%7Be%5Ez-1%7Dz%5Cge%20e%5E%7Bz%2F2%7D

将它们展开为幂级数,即可得

%5Cbegin%7Balign%7D%5Cfrac%20%7Be%5Ez-1%7Dz-e%5E%7Bz%2F2%7D%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7Bz%5En%7D%7B(n%2B1)!%7D-%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7Bz%5En%7D%7B2%5En%5Ccdot%20n!%7D%5C%5C%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(%5Cfrac1%7Bn%2B1%7D-%5Cfrac1%7B2%5En%7D%5Cright)%5Cfrac%7Bz%5En%7D%7Bn!%7D%5Cend%7Balign%7D

因为 n%5Cge1 时总有 2%5En%5Cge%20n%2B1 ,因此 z%5Cge0 时 p(z)%5Cge0 ,z%3D0 时取等,也就是说 a 需要小于等于 g(x) 在 x%5Cto0%5E%2B 时的极限,有

%5Cbegin%7Baligned%7D%5Clim_%7Bx%5Cto0%5E%2B%7D%5Cfrac%7B%5Cln(e%5Ex-1)-%5Cln%20x%7D%7Bx%7D%26%3D%5Clim_%7Bx%5Cto0%5E%2B%7D%5Cfrac%7B%5Cln(1%2B%5Cfrac12x%2Bo(x%5E2))%7D%7Bx%7D%5C%5C%26%3D%5Clim_%7Bx%5Cto0%5E%2B%7D%5Cfrac%7B%5Cfrac12x%2Bo(x%5E2)%7D%7Bx%7D%3D%5Cfrac12%5Cend%7Baligned%7D

所以 a%5Cle%5Cfrac12

第三问

首先还是先引入一个不等式,即 x%3E0 时

%5Cfrac%20x%7B%5Csqrt%7B1%2Bx%7D%7D%3E%5Cln(1%2Bx)

那么,作为人道主义的善良的我当然会给出它的证明了,令 y%3D%5Csqrt%7Bx%2B1%7D%3E1 ,则上式转化为证明

p(y)%3D2y%5Cln%20y-y%5E2%2B1%3C0

对它求导得

p'(y)%3D2(%5Cln%20y-y)%2B2%3C%20-2%2B2%3D0

因此 p(y)%3Cp(1)%3D0 ,即得证上述不等式,对正整数 k ,将 x%3D%5Cfrac1k 代入,得

%5Cfrac1%7B%5Csqrt%7Bk%5E2%2Bk%7D%7D%3D%5Cfrac1%7Bk%5Csqrt%7B1%2B%5Cfrac1k%7D%7D%3E%5Cln%5Cleft(1%2B%5Cfrac1k%5Cright)

然后从1到n求和,即可得

%5Cfrac1%7B%5Csqrt%7B1%5E2%2B1%7D%7D%2B%5Cfrac1%7B%5Csqrt%7B2%5E2%2B2%7D%7D%2B%5Cdots%2B%5Cfrac1%7B%5Csqrt%7Bn%5E2%2Bn%7D%7D%3E%5Cln(n%2B1)

Q.E.D.

%5Csquare

有一说一这个第三问我完全看不出跟题干有什么关系

那么本期专栏就到这结束了,溜了溜了


2022年高考全国甲卷&新高考Ⅱ卷导数大题的评论 (共 条)

分享到微博请遵守国家法律