欢迎光临散文网 会员登陆 & 注册

单摆周期公式

2021-10-27 00:56 作者:偏谬Lyx  | 我要投稿

单摆的运动方程如下,

%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2%20%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%5E2%7D%20%2B%20%5Comega%5E2%20%5Csin%5Ctheta%20%3D%200

其中 %5Comega%20%3D%20%5Csqrt%7Bg%2Fl%7D ,l  为摆长。一般在讨论小角摆动时,我们会近似认为 %5Csin%5Ctheta%20%5Capprox%20%5Ctheta,从而简化成简谐运动的方程。但本文选择严格求解原方程。

首先,两边同乘以 2%20%5Ctheta'(t)

2%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2%20%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%5E2%7D%20%2B%202%20%5Comega%5E2%20%5Csin%5Ctheta%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%3D%200

上式可以写成全导数的形式,

%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cleft%5B%20%5Cleft(%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cright)%5E2%20-%202%5Comega%5E2%20%5Ccos%5Ctheta%20%5Cright%5D%20%3D%200

这样就能轻松完成第一次积分,

%5Cleft(%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cright)%5E2%20-%202%5Comega%5E2%20%5Ccos%20%5Ctheta%20%3D%20C

假设单摆是从 %5Ctheta%20%3D%20%5Ctheta_0 处自由释放,即初始条件为,%5Ctheta(0)%3D%5Ctheta_0%5Ctheta'(0)%3D0,由此可以定出积分常数,

C%20%3D%20-2%5Comega%5E2%20%5Ccos%20%5Ctheta_0

代回方程可得,

%5Cbegin%7Bsplit%7D%0A%5Cleft(%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cright)%5E2%20%26%3D%202%5Comega%5E2%20%5Cleft(%20%5Ccos%20%5Ctheta%20-%20%5Ccos%20%5Ctheta_0%20%5Cright)%20%5C%5C%0A%26%3D%204%5Comega%5E2%20%5Cleft(%20%5Csin%5E2%20%5Cfrac%7B%5Ctheta_0%7D%7B2%7D%20-%20%5Csin%5E2%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%20%5Cright)%20%0A%5Cend%7Bsplit%7D

开根整理后变为,

2%5Comega%20%5C%2C%5Cmathrm%7Bd%7Dt%20%3D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Csqrt%7Bk%5E2%20-%20%5Csin%5E2%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%7D%7D

其中 k%20%3D%20%5Csin%20%5Cfrac%7B%5Ctheta_0%7D%7B2%7D。由对称性可知,单摆从最低点到达最高点的时间为 1%2F4 个周期,我们选择这段运动进行积分,

2%5Comega%20%5Cint_0%5E%7BT%2F4%7D%20%5Cmathrm%7Bd%7Dt%20%3D%20%5Cint_0%5E%7B%5Ctheta_0%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Csqrt%7Bk%5E2%20-%20%5Csin%5E2%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%7D%7D

%5Csin%20x%3D%20%5Cfrac%7B1%7D%7Bk%7D%20%5Csin%20%5Cfrac%7B%5Ctheta%7D%7B2%7D ,变换后 x 对应的积分区间为 %5B0%2C%5Cpi%2F2%5D,对两边求微分,

%5Cbegin%7Bsplit%7D%0A%5Ccos%20x%20%5C%2C%5Cmathrm%7Bd%7Dx%20%26%3D%20%5Cfrac%7B1%7D%7B2k%7D%20%5Ccos%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%20%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%20%5C%5C%0A%26%3D%20%5Cfrac%7B1%7D%7B2k%7D%20%5Csqrt%7B1-%5Csin%5E2%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%7D%20%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%20%5C%5C%0A%26%3D%20%5Cfrac%7B1%7D%7B2k%7D%20%5Csqrt%7B1-%20k%5E2%5Csin%5E2%20x%7D%20%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%0A%5Cend%7Bsplit%7D

整理可得,

%5Cmathrm%7Bd%7D%5Ctheta%20%3D%20%5Cfrac%7B2k%20%5Ccos%20x%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D%20%5C%2C%5Cmathrm%7Bd%7Dx

积分变为,

%5Cbegin%7Bsplit%7D%0A%09%5Cfrac%7B%5Comega%20T%7D%7B2%7D%20%26%3D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Cfrac%7B1%7D%7Bk%5Csqrt%7B1%20-%20%5Csin%5E2%20x%7D%7D%20%5Ccdot%20%5Cfrac%7B2k%20%5Ccos%20x%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D%20%5C%2C%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%09%26%3D%202%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D%0A%5Cend%7Bsplit%7D

利用第一类完全椭圆积分

K(k)%20%3D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D

可以把单摆的周期表示为,

T%20%3D%20%5Cfrac%7B4%7D%7B%5Comega%7D%20K(k)

利用级数展开,

%5Cbegin%7Bsplit%7D%0A%5Cfrac%7B1%7D%7B%5Csqrt%7B1-x%7D%7D%26%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%5C%2Cx%5En%5C%5C%0A%26%3D1%2B%5Cfrac%7Bx%7D%7B2%7D%2B%5Cfrac%7B3x%5E2%7D%7B8%7D%20%2B%5Ccdots%0A%5Cend%7Bsplit%7D

将 K(k) 中的被积函数展开为,

%5Cfrac%7B1%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D%20%3D%20%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20k%5E%7B2n%7D%20%5Csin%5E%7B2n%7Dx

于是问题转化成了对每一项的积分,

K(k)%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20k%5E%7B2n%7D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7B2n%7Dx%20%5C%2C%5Cmathrm%7Bd%7Dx

详细积分过程见后文附录,其结果为,

%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7B2n%7Dx%20%5C%2C%5Cmathrm%7Bd%7Dx%20%3D%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20%5Ccdot%20%5Cfrac%7B%5Cpi%7D%7B2%7D

于是,我们得到了第一类完全椭圆积分的级数解,

K(k)%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cleft%5B%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20k%5En%20%5Cright%5D%5E2

代回周期公式,

%5Cbegin%7Bsplit%7D%0AT%26%3D%5Cfrac%7B2%5Cpi%7D%7B%5Comega%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cleft%5B%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%5Csin%5En%5Cfrac%7B%5Ctheta_0%7D%7B2%7D%5Cright%5D%5E2%5C%5C%0A%25%0A%26%3D%5Cfrac%7B2%5Cpi%7D%7B%5Comega%7D%5Cleft(1%2B%5Cfrac14%5Csin%5E2%5Cfrac%7B%5Ctheta_0%7D%7B2%7D%2B%5Cfrac%7B9%7D%7B64%7D%5Csin%5E4%5Cfrac%7B%5Ctheta_0%7D%7B2%7D%2B%5Ccdots%5Cright)%0A%5Cend%7Bsplit%7D

在小角近似下,只保留第一项,

T%20%5Capprox%20%5Cfrac%7B2%5Cpi%7D%7B%5Comega%7D%20%3D%202%5Cpi%20%5Csqrt%7B%5Cfrac%7Bl%7D%7Bg%7D%7D

附录

计算积分,

I_n%20%3D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5En%20x%20%5C%2C%5Cmathrm%7Bd%7Dx

以下提供两种求解方法。


1. 递推公式

首先计算前两项,

%5Cbegin%7Balign%7D%0AI_0%26%3D%5Cint_0%5E%7B%5Cpi%2F2%7D%5Cmathrm%7Bd%7Dx%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%5C%5C%0AI_1%26%3D%5Cint_0%5E%7B%5Cpi%2F2%7D%5Csin%7Bx%7D%5C%2C%5Cmathrm%7Bd%7Dx%3D1%0A%5Cend%7Balign%7D

对于 I_n 可进行如下计算,

%5Cbegin%7Bsplit%7D%0A%20%20%20%20%20%20%20%20I_n%20%26%20%3D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5En%20x%20%5C%2C%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%20%20%20%20%20%20%20%20%26%20%3D%20-%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7Bn-1%7D%20x%20%5C%2C%5Cmathrm%7Bd%7D%20(%5Ccos%20x)%0A%5Cend%7Bsplit%7D

利用分部积分,

%5Cbegin%7Bsplit%7D%0A%20%20%20%20%20%20%20%20I_n%20%26%3D%20-%20%5Cleft.%20%5Csin%5E%7Bn-1%7Dx%20%5Ccos%20x%20%5Cright%7C_0%5E%7B%5Cpi%2F2%7D%20%2B%20(n-1)%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7Bn-2%7Dx%20%5Ccos%5E2%20x%20%5C%2C%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%26%3D%20(n-1)%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7Bn-2%7Dx%20%5Cleft(%201-%5Csin%5E2%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%26%3D%20(n-1)%20%5Cleft(I_%7Bn-2%7D-I_n%20%5Cright)%0A%5Cend%7Bsplit%7D

递推公式为,

I_n%20%3D%20%5Cfrac%7Bn-1%7D%7Bn%7D%20I_%7Bn-2%7D

分奇偶讨论,

%5Cbegin%7Balign%7D%0A%26I_%7B2n%2B1%7D%20%3D%20%5Cfrac%7B2n%7D%7B2n%2B1%7D%20%5Ccdot%20%5Cfrac%7B2n-2%7D%7B2n-1%7D%20%5Ccdots%20%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20I_1%20%3D%20%20%5Cfrac%7B(2n)!!%7D%7B(2n%2B1)!!%7D%5C%5C%0A%26I_%7B2n%7D%20%3D%20%5Cfrac%7B2n-1%7D%7B2n%7D%20%5Ccdot%20%5Cfrac%7B2n-3%7D%7B2n-2%7D%20%5Ccdots%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20I_0%20%3D%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20%5Ccdot%20%5Cfrac%7B%5Cpi%7D%7B2%7D%0A%5Cend%7Balign%7D


2. Beta 函数

利用 Gamma 函数的定义,

%5CGamma(n)%3D%5Cint_0%5E%7B%5Cinfty%7Dt%5E%7Bn-1%7D%5C%2C%5Cmathrm%7Be%7D%5E%7B-t%7D%5C%2C%5Cmathrm%7Bd%7Dt

令 t%3Dx%5E2

%5CGamma(n)%3D2%5Cint_0%5E%7B%5Cinfty%7Dx%5E%7B2n-1%7D%5C%2C%5Cmathrm%7Be%7D%5E%7B-x%5E2%7D%5C%2C%5Cmathrm%7Bd%7Dx

做这个变量替换的目的是方便转换到极坐标,

%5Cbegin%7Bsplit%7D%0A%5CGamma(m)%5Ccdot%5CGamma(n)%26%3D4%5Cint%5Climits_0%5E%7B%5Cinfty%7D%5Cint%5Climits_0%5E%7B%5Cinfty%7Dx%5E%7B2m-1%7Dy%5E%7B2n-1%7D%5C%2C%5Cmathrm%7Be%7D%5E%7B-(x%5E2%2By%5E2)%7D%5C%2C%5Cmathrm%7Bd%7Dx%5C%2C%5Cmathrm%7Bd%7Dy%5C%5C%0A%25%0A%26%3D4%5Cint_0%5E%7B%5Cinfty%7Dr%5E%7B2(m%2Bn)-1%7D%5C%2C%5Cmathrm%7Be%7D%5E%7B-r%5E2%7D%5C%2C%5Cmathrm%7Bd%7Dr%5Cint_0%5E%7B%5Cpi%2F2%7D%5Ccos%5E%7B2m-1%7D%5Ctheta%5Csin%5E%7B2n-1%7D%5Ctheta%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%5C%5C%0A%25%0A%26%3D2%5C%2C%5CGamma(m%2Bn)%5Cint_0%5E%7B%5Cpi%2F2%7D%5Ccos%5E%7B2m-1%7D%5Ctheta%5Csin%5E%7B2n-1%7D%5Ctheta%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%0A%5Cend%7Bsplit%7D

由此可以定义 Beta 函数,

%5Cbegin%7Bsplit%7D%0A%5Cmathrm%7BB%7D(m%2Cn)%26%3D%5Cfrac%7B%5CGamma(m)%5Ccdot%5CGamma(n)%7D%7B%5CGamma(m%2Bn)%7D%5C%5C%0A%26%3D2%5Cint_0%5E%7B%5Cpi%2F2%7D%5Ccos%5E%7B2m-1%7D%5Ctheta%5Csin%5E%7B2n-1%7D%5Ctheta%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%0A%5Cend%7Bsplit%7D

根据定义,

%5Cbegin%7Bsplit%7D%0AI_n%26%3D%5Cfrac12%5Cmathrm%7BB%7D%5C!%5Cleft(%5Cfrac12%2C%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cright)%5C%5C%0A%26%3D%5Cfrac%7B%5CGamma%5C!%5Cleft(%5Cfrac12%5Cright)%5Ccdot%5CGamma%5C!%5Cleft(%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cright)%7D%7B2%5C%2C%5CGamma%5C!%5Cleft(%5Cfrac%7Bn%7D%7B2%7D%2B1%5Cright)%7D%0A%5Cend%7Bsplit%7D

进一步计算需要利用 Gamma 函数的如下性质,

%5Cbegin%7Balign%7D%0A%26%5CGamma(n%2B1)%3Dn%5CGamma(n)%3Dn!%5C%5C%0A%26%5CGamma%5C!%5Cleft(%5Cfrac12%5Cright)%3D%5CGamma%5C!%5Cleft(-%5Cfrac12%5Cright)%3D%5Csqrt%7B%5Cpi%7D%5C%5C%0A%26%5CGamma%5C!%5Cleft(n%2B%5Cfrac12%5Cright)%3D%5Cfrac%7B(2n-1)!!%7D%7B2%5En%7D%5Csqrt%7B%5Cpi%7D%0A%5Cend%7Balign%7D

分奇偶讨论,

%5Cbegin%7Balign%7D%0A%26I_%7B2n%2B1%7D%3D%5Cfrac%7B%5CGamma%5C!%5Cleft(%5Cfrac12%5Cright)%5Ccdot%5CGamma(n%2B1)%7D%7B2%5C%2C%5CGamma%5C!%5Cleft(n%2B1%2B%5Cfrac12%5Cright)%7D%3D%5Cfrac%7B(2n)!!%7D%7B(2n%2B1)!!%7D%5C%5C%0A%26I_%7B2n%7D%3D%5Cfrac%7B%5CGamma%5C!%5Cleft(%5Cfrac12%5Cright)%5Ccdot%5CGamma%5C!%5Cleft(n%2B%5Cfrac12%5Cright)%7D%7B2%5C%2C%5CGamma%5C!%5Cleft(n%2B1%5Cright)%7D%3D%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%5Cfrac%7B%5Cpi%7D%7B2%7D%0A%5Cend%7Balign%7D


单摆周期公式的评论 (共 条)

分享到微博请遵守国家法律