欢迎光临散文网 会员登陆 & 注册

2018年考研数学(二)真题解析(高清大图)

2021-11-22 23:18 作者:梦醒南天  | 我要投稿


一、选择题(1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的.)

(1)若 %5Clim_%7Bx%5Cto0%7D(e%5Ex%2Bax%5E2%2Bbx%20)%20%5E%5Cfrac%7B1%7D%7Bx%5E2%20%7D%20%3D1,则

    (A)a%3D%5Cfrac%7B1%7D%7B2%7D%2C%20b%3D-1%20 .   

    (B)a%3D-%5Cfrac%7B1%7D%7B2%7D%2C%20b%3D-1%20 .

    (C)a%3D%5Cfrac%7B1%7D%7B2%7D%2C%20b%3D1%20 .       

    (D)a%3D-%5Cfrac%7B1%7D%7B2%7D%2C%20b%3D1%20%20 .

    答案:B


(2)下列函数中,在 x%3D0 处不可导的是

    (A)f(x)%3D%5Cvert%20x%20%5Cvert%20%5Csin%20%5Cvert%20x%20%5Cvert%20%20

    (B)f(x)%3D%5Cvert%20x%20%5Cvert%20%5Csin%20%5Cvert%20%5Csqrt%7B%5Cvert%20x%20%5Cvert%20%7D%20

    (C)f(x)%3D%5Ccos%20%5Cvert%20x%20%5Cvert%20

    (D)f(x)%3D%5Ccos%20%5Csqrt%7B%5Cvert%20x%20%5Cvert%20%7D%20

    答案:D

    答案:D

    答案:D


    答案:C


    答案:C


    答案:A


    答案:A


二、填空题(9~14 题,每小题 4 分,共 24 分)

(9)%5Clim_%7Bx%5Cto%E2%88%9E%7D%20x%5E2%5Barctan(x%2B1)-arctanx%5D%20%3D%20%20 ___________ .

    答案:1


(10)曲线  y%3Dx%5E2%2B2%5Cln%20x%20 在其拐点处的切线方程是 __________ .

    答案:y%3D4x-3

(11)%5Cint_%7B5%7D%5E%7B%2B%E2%88%9E%7D%5Cfrac%7B1%7D%7Bx%5E2%20-4x%2B3%7Ddx%3D%20%20 __________ .

    答案:%5Cfrac%7B%5Cln%202%20%7D%7B2%7D%20

(12)曲线 %5Cleft%5C%7B%20x%3D(%5Ccos%20t)%20%5E3%2Cy%3D(%5Csin%20t%20)%5E3%20%20%20%5Cright%5C%7D%20,在 t%20%3D%20%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20 对应点处的曲率为 __________ .

    答案: %5Cfrac%7B2%7D%7B3%7D%20

(13)设函数 z%3Dz(x%2Cy) 由方程 %5Cln%20z%20%2B%20e%5E%7Bz-1%7D%20%20%20%20%3Dxy 确定,则 %20%5Cfrac%7B%E2%88%82z%7D%7B%E2%88%82x%7D%5Cvert_%7B(2%2C%5Cfrac%7B1%7D%7B2%7D%20)%7D%20%20%3D ________

    答案: %5Cfrac%7B1%7D%7B4%7D%20

(14)设 A 为 3 阶矩阵,%5Calpha%20_%7B1%7D%EF%BC%8C%20%5Calpha%20_%7B2%7D%EF%BC%8C%5Calpha%20_%7B3%7D 为线性无关的向量组. 若 A%5Calpha%20_%7B1%7D%3D2%5Calpha%20_%7B1%7D%2B%5Calpha%20_%7B2%7D%2B%5Calpha%20_%7B3%7DA%5Calpha%20_%7B2%7D%3D%5Calpha%20_%7B2%7D%2B2%5Calpha%20_%7B3%7DA%5Calpha%20_%7B3%7D%3D-%5Calpha%20_%7B2%7D%2B%5Calpha%20_%7B3%7D,则 A 的实特征值为 __________ .

    答案:2


三、解答题(15~23 小题,共 94 分. 解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分 10 分)

        求不定积分 %5Cint%20e%5E%7B2x%7Darctan%5Csqrt%7Be%5Ex%20-1%7Ddx%20 .

    答案: %5Cfrac%7B1%7D%7B2%7De%5E%7B2x%7D%20%20arc%5Ctan%20%5Csqrt%7Be%5Ex-1%20%7D-%5Cfrac%7B1%7D%7B6%7D(e%5Ex%2B2%20)%20%5Csqrt%7Be%5Ex-1%20%7D%2BC%20%20

(16)(本题满分 10 分)

        已知连续函数 f(x) 满足 %5Cint_%7B0%7D%5E%7Bx%7Df(x)dt%20%2B%20%20%5Cint_%7B0%7D%5E%7Bx%7Dtf(x-t)dt%20%3D%20ax%5E2%20  .

    (Ⅰ)求 f(x) ;

    (Ⅱ)若 f(x) 在区间 [0, 1] 上的平均值为 1,求 a 的值 .

    答案:(Ⅰ) f(x)%3D2a(1-e%5E%7B-x%7D%20)

               (Ⅱ) a%20%3D%20%5Cfrac%7Be%7D%7B2%7D%20 

    答案: 3%5Cpi%20%5E2%2B5%5Cpi%20%20

(18)(本题满分 10 分)

        已知常数 k%5Cgeq%20%5Cln%202%20%20-%201 ,证明:(x-1)(x-(%5Cln%20x)%20%5E2%20%2B2k%5Cln%20x%20-1%20)%5Cgeq%200 .


(19)(本题满分 10 分)

        将长为 2 m 的铁丝分为三段,依次围成圆、正方形与三角形,三个图形的面积之和是否存在最小值?若存在,求出最小值 .


(20)(本题满分 11 分)

        已知曲线 L%3Ay%3D%5Cfrac%7B4%7D%7B9%7D%20x%5E2%20(x%E2%89%A50)%20 ,点 O(0%2C0),点 A(0%2C1) . 设 P 是 L 上的动点,S 是直线 OA 与直线 AP 及曲线 L 所围成图形的面积. 若 P 运动到点 (3%2C4) 时沿 x 轴正向的速度是 4,求此时 S 关于时间 t 的变化率 .


(21)(本题满分 11 分)

        设数列 %5Cleft%5C%7B%20x_%7Bn%7D%20%20%5Cright%5C%7D%20 满足:x_%7B1%7D%20%3E%200%2C%20x_%7Bn%7De%5E%7Bx_%7Bn%2B1%7D%20%7D%3D%20%20%20e%5E%7Bx_%7Bn%7D%7D-1(n%3D1%2C2%2C...) . 证明 %5Cleft%5C%7B%20x_%7Bn%7D%20%20%5Cright%5C%7D%20 收敛,并求 %5Clim_%7Bx%5Cto%E2%88%9E%7D%20x_%7Bn%7D%20%20 .


(22)(本题满分 11 分)

        设实二次型 f(x_%7B1%7D%2Cx_%7B2%7D%2Cx_%7B3%7D%20)%3D(x_%7B1%7D-x_%7B2%7D%2Bx_%7B3%7D)%5E2%20 %2B(x_%7B2%7D%2Bx_%7B3%7D)%5E2%20 %2B(x_%7B1%7D%2Bax_%7B3%7D)%5E2%20,其中 a 是参数 .

        (Ⅰ)求 f(x_%7B1%7D%2Cx_%7B2%7D%2Cx_%7B3%7D%20)%3D0 的解;

        (Ⅱ)求 f(x_%7B1%7D%2Cx_%7B2%7D%2Cx_%7B3%7D%20) 的规范形 .


2018年考研数学(二)真题解析(高清大图)的评论 (共 条)

分享到微博请遵守国家法律