欢迎光临散文网 会员登陆 & 注册

新到一批医科成稿

2023-02-17 16:00 作者:期刊正则文创  | 我要投稿

1.Convolution Neural Network Based Biomedical Image Restoration for Noise Artifact(基于卷积神经网络的生物医学图像修复的噪音伪装)        
2.Sentiment Analysis Approach for Identifying healthcare Rumors based on Covid Pandemic over Social Media(基于Covid大流行在社交媒体上识别医疗保健谣言的情感分析方法)             
3.Relevance Measure in Heterogeneous Networks Based RNA Disease Marker Prediction Model(基于异质网络的RNA疾病标志物预测模型的关联性测量)  
4.Lightweight LSTM Model for Block chain based Secure Stock Price Prediction
(基于区块链的安全股票价格预测的轻量级LSTM模型)     
5.u-net network, residual network, lung cancer detection, image processing, neural networks
(u-net网络,残差网络,肺癌检测,图像处理,神经网络 )               
6.Healthcare Services Framework based on Versatile Distributed-Computing
(基于多功能分布式计算的医疗服务框架)            
7.AI Based Jellyfish Search Optimization Model for Brain Disease Diagnosis from F-MRI Image
(基于AI的水母搜索优化模型用于F-MRI图像的脑病诊断)           
8.Multi-Class Classification of Re-Weighting X-Ray images using Deep learning CNN Models
(使用深度学习CNN模型对重新加权的X射线图像进行多类分类)              
9.Supervised Context-Aware Latent Dirichlet Allocation-based Drug Recommendation Model
(基于监督的上下文感知的潜在狄里奇分配的药物推荐模型)             
10.Multi-Feature Fusion Based Unsupervised Approach for Diagnosis of Brain Diseases
(基于多特征融合的非监督方法用于脑部疾病的诊断)            
11.Machine Learning Based Multi-Layered Gradient Boosting Trees for Drug Recommendation and Classification
(基于机器学习的多层次梯度提升树的药物推荐和分类        )      
12.EEG based Hybrid Deep Learning Model for Arrhythmia Disease Diagnosis
(基于EEG的混合深度学习模型用于心律失常疾病的诊断)              
13.Deep Learning Based Multiscale Segmentation of Spinal Cord Image
(基于深度学习的脊髓图像的多尺度分割)            
14.GAN Based Multi-Scale Model to classifying blood cells image for Clinical Decision support systems
(基于GAN的多尺度模型对血细胞图像进行分类,用于临床决策支持系统)
15.Clinical Deep Model to Analyze Medical Multivariate Time Series Data for Health Diagnosis
(用于健康诊断的医学多变量时间序列数据的临床深度模型分析)          
16.Dilated Convolution Model for Lightweight Neural Network
(轻量级神经网络的扩张卷积模型)

新到一批医科成稿的评论 (共 条)

分享到微博请遵守国家法律