R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析|附代码数据
值网格上计算套索LASSO或弹性网路惩罚的正则化路径
正则化(regularization)
该算法速度快,可以利用输入矩阵x中的稀疏性,拟合线性、logistic和多项式、poisson和Cox回归模型。可以通过拟合模型进行各种预测。它还可以拟合多元线性回归。”
例子
加载数据
这里加载了一个高斯(连续Y)的例子。
as_data_frame(y)
## # A tibble: 100 x 1## V1## <dbl>## 1 -1.2748860## 2 1.8434251## 3 0.4592363## 4 0.5640407## 5 1.8729633## 6 0.5275317## 7 2.4346589## 8 -0.8945961## 9 -0.2059384## 10 3.1101188## # ... with 90 more rows
初始岭回归
cv.glmnet
执行k-折交叉验证 .
## 执行岭回归glmnet(x , y ## “alpha=1”是套索惩罚, “alpha=0”是岭惩罚。 alpha = 0)
点击标题查阅往期内容
R使用LASSO回归预测股票收益
左右滑动查看更多
01
02
03
04
## 用10折CV进行岭回归cv.glmnet( ## 类型.测量:用于交叉验证的丢失。 type.measure = "mse", ## K = 10 是默认值。 nfold = 10, ##“alpha=1”是套索惩罚,“alpha=0”是岭惩罚。 alpha = 0)## 惩罚vs CV MSE图
## 在误差最小λ处提取系数cv$lambda.min
## [1] 0.1789759
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。coef( s = lambda.min)
## 21 x 1 sparse Matrix of class "dgCMatrix"## 1## (Intercept) 0.149041059## V1 1.302684272## V2 0.035835380## V3 0.719936146## V4 0.036473087## V5 -0.863490158## V6 0.605750873## V7 0.123446432## V8 0.376890626## V9 -0.040012847## V10 0.105999328## V11 0.240967604## V12 -0.066363634## V13 -0.042048935## V14 -1.092107794## V15 -0.119566353## V16 -0.035859663## V17 -0.038827463## V18 0.061785988## V19 -0.001409608## V20 -1.079879797
## 截距估计应该剔除。(coef(cv, s = lambda.min))[-1]
这个初始过程给出了基于10折交叉验证选择的最佳岭回归模型的一组系数,使用平方误差度量
作为模型性能度量。
KNNL和Hadi中提到的另一种选择lambda的方法是选择最小的lambda,这样系数的轨迹是稳定的,VIF变得足够小。在这种情况下,VIF的定义必须包括惩罚因子lambda,这在Hadi的p295和knll的p436中有说明。
是标准化的协变量矩阵.
是原始非标准化协变量的相关矩阵
. 该计算可定义如下。
vif <- function(x, lambda) { ZtZ <- cor(x) diag(solve(ZtZ + lambdaI %*% ZtZ %*% solve(ZtZ + lambdaI) ## ggplot(mapping = aes(x = lambda, y = value, group = key, color = key)) + geom_line() +
自适应LASSO
## 执行自适应LASSOglmnet(x = y = ## 类型。度量:用于交叉验证的损失。 ##“alpha=1”是套索惩罚,“alpha=0”是岭惩罚。 alpha = 1, ## ## 惩罚系数:可以对每个系数应用单独的惩罚因子。这是一个乘以“lambda”以允许差异收缩的数字。对于某些变量可以是0, 这意味着没有收缩,而且这个变量总是包含在模型中。对于所有变量,默认值为1(对于“exclude”中列出的变量,默认值为无限大)。注意:惩罚因子在内部被重新调整为与nvars相加,lambda序列将反映这种变化。
## 使用10折CV执行自适应套索 ## 类型。度量:用于交叉验证的损失。类型。测量= " mse ", ## K = 10 是默认值。 nfold = 10, ## ‘alpha = 1’ 是套索惩罚,'alpha=0'是岭惩罚。 ## ## 惩罚系数:可以对每个系数应用单独的惩罚因子。这是一个乘以“lambda”以允许差异收缩的数字。对于某些变量可以为0,这意味着没有收缩,并且该变量始终包含在模型中。对于所有变量,默认值为1(对于“exclude”中列出的变量,默认值为无限大)。注意:惩罚因子在内部被重新调整为与nvars相加,lambda序列将反映这种变化。## 惩罚vs CV MSE图
## 在误差最小λ处提取系数lambda.min
## [1] 0.7193664
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。best_alasso_coef1
## 21 x 1 sparse Matrix of class "dgCMatrix"## 1## (Intercept) 0.1269539## V1 1.3863728## V2 . ## V3 0.7573538## V4 . ## V5 -0.8937983## V6 0.5718800## V7 . ## V8 0.3654255## V9 . ## V10 . ## V11 0.1824140## V12 . ## V13 . ## V14 -1.1150736## V15 . ## V16 . ## V17 . ## V18 . ## V19 . ## V20 -1.1268794
那个惩罚系数参数允许指定系数特定的惩罚级别。这里我们使用自适应LASSO惩罚,即最佳岭系数绝对值的逆。
最终模型Rsquare
## R^2函数## https://en.wikipedia.org/wiki/Coefficient_of_determination ## 总SS ss_tot <- sum((y - ybar)^2) ## 剩余 SS ss_res <- sum((y - yhat)^2) ## R^2 = 1 - ss_res/ ss_tot## 调整R^2函数## n个样本,p个参数## 获取 R^2 r_sq(as.vector(y_cont), as.vector(predict(alasso1, newx =
## [1] 0.906806
##获得调整R ^ 2adj_r_sq(r_squared_alasso1, n = nrow(y_cont),
## [1] 0.9007934
## 交叉验证测试集R^2## alasso1_cv$cvm[1] 是截距模型的交叉验证测试集均方误差。1 - cvm[lambda == lambda.min] / cvm[1]
## [1] 0.8854662
交叉验证测试集Rsquare
lapply(unique( foldid), function(id) { ## 拟合排除测试集 (foldid == id) glmnet(x = x_cont[alasso1_cv$foldid != id,], y = y_cont[alasso1_cv$foldid != id], ## 使用模型拟合最佳lambda测试集Yïhat predict(fit, newx = x_cont[alasso1_cv$foldid == id,], ## 测试组 R^2 1 - sum((y - y_pred)^2) / sum((y - mean(y))^2)}) %>%
## [1] 0.8197796 0.9090972 0.9499495 0.8019303 0.8637534 0.7184797 0.8579943 0.9250376 0.8300891## [10] 0.9188004
## [1] 0.8594911
多项式例子
## # A tibble: 500 x 30## V1 V2 V3 V4 V5 V6 V7 V8## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 0.8212500 1.2155090 -0.64860899 -0.7001262 -1.9640742 1.1692107 0.28598652 -0.1664266## 2 0.9264925 -1.1855031 -1.18297879 0.9828354 1.0693610 -0.2302219 0.57772625 -0.8738714## 3 -1.5719712 0.8568961 -0.02208733 1.7445962 -0.4148403 -2.0289054 -1.31228181 -1.2441528## 4 0.7419447 -0.9452052 -1.61821790 1.0015587 -0.4589488 0.5154490 0.29189973 0.1114092## 5 -0.1333660 0.5085678 0.04739909 -0.4486953 -0.2616950 -0.1554108 -1.24834832 -1.0498054## 6 -0.5672062 0.6020396 -2.10300909 0.3119233 0.3272173 -0.8671885 0.97512759 -0.7216256## 7 1.9683411 2.5162198 1.61109738 1.0047913 -0.5194647 1.0738680 -0.16176095 -0.4267418## 8 0.2857727 -1.7017703 1.41062569 -0.5823727 -1.3330908 1.7929250 0.06396841 -0.6818909## 9 -0.5339434 0.1725089 0.93504676 -1.9956942 -0.9021089 -0.2624043 0.97406411 0.5166823## 10 0.8081052 -0.9662501 0.54666915 -0.8388913 0.9665053 1.4039598 0.63502500 0.3429640## # ... with 490 more rows, and 22 more variables: V9 <dbl>, V10 <dbl>, V11 <dbl>, V12 <dbl>,## # V13 <dbl>, V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>, V19 <dbl>, V20 <dbl>,## # V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>, V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>,## # V29 <dbl>, V30 <dbl>
as_data_frame(y)
## # A tibble: 500 x 1## value## <dbl>## 1 3## 2 2## 3 2## 4 2## 5 3## 6 3## 7 3## 8 1## 9 1## 10 1## # ... with 490 more rows
plot(ridge2, xvar = "lambda")
## 用10折交叉验证CV进行岭回归 ## 类型.测量:用于交叉验证的损失。类型.测量=“偏差”, ## 多项式回归 ## ‘alpha = 1’ 是套索惩罚,'alpha=0'是岭惩罚。## 惩罚vs CV MSE图plot(ridge2_cv)
## 在误差最小λ处提取系数 lambda.min
## [1] 0.02540802
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。 do.call(cbind, coef( cv, s = lambda.min))
## 31 x 3 sparse Matrix of class "dgCMatrix"## 1 1 1## (Intercept) -0.030926870 -0.012579891 0.043506761## V1 0.056754184 -0.332936704 0.276182520## V2 -0.330771038 -0.135465951 0.466236989## V3 0.417313228 -0.166953973 -0.250359256## V4 -0.275107590 -0.075937714 0.351045304## V5 -0.359310997 0.447318724 -0.088007727## V6 0.318490592 -0.042273343 -0.276217249## V7 -0.069203544 0.103874053 -0.034670509## V8 0.398432356 0.056457793 -0.454890149## V9 -0.100873703 -0.831473315 0.932347018## V10 -0.079409535 0.550465763 -0.471056227## V11 0.015539259 0.022872091 -0.038411350## V12 -0.023384035 -0.037367749 0.060751784## V13 -0.162456798 0.271096200 -0.108639401## V14 0.173128811 -0.127758267 -0.045370544## V15 -0.029448593 0.035626357 -0.006177764## V16 -0.078135662 0.066353666 0.011781996## V17 0.144753874 -0.137960413 -0.006793461## V18 0.032929352 0.071275386 -0.104204738## V19 0.090783173 -0.147044947 0.056261774## V20 -0.010749594 0.146821172 -0.136071578## V21 0.059468598 -0.008259112 -0.051209485## V22 0.133514075 -0.030352819 -0.103161256## V23 0.070174614 -0.054781769 -0.015392844## V24 0.027344225 0.164797661 -0.192141886## V25 0.010677968 0.014023080 -0.024701049## V26 0.010490474 -0.034644559 0.024154085## V27 -0.008201249 0.114562955 -0.106361705## V28 -0.115249536 -0.067581191 0.182830727## V29 0.027760120 0.056857406 -0.084617526## V30 -0.062642211 -0.007339614 0.069981825
## 转换为矩阵## 截距估计应该取消。 1 / abs(as.matrix(best_ridge_coef2)[-1,])
## 1 1 1## V1 17.619846 3.003574 3.620794## V2 3.023239 7.381929 2.144832## V3 2.396282 5.989675 3.994260## V4 3.634942 13.168687 2.848635## V5 2.783104 2.235542 11.362639## V6 3.139810 23.655569 3.620339## V7 14.450127 9.627043 28.842957## V8 2.509836 17.712347 2.198333## V9 9.913386 1.202684 1.072562## V10 12.592946 1.816643 2.122889## V11 64.353133 43.721407 26.033972## V12 42.764219 26.761045 16.460422## V13 6.155483 3.688727 9.204764## V14 5.776046 7.827282 22.040732## V15 33.957479 28.069106 161.870875## V16 12.798253 15.070757 84.875262## V17 6.908278 7.248456 147.200381## V18 30.368044 14.030089 9.596493## V19 11.015257 6.800642 17.774057## V20 93.026766 6.811007 7.349073## V21 16.815597 121.078385 19.527632## V22 7.489847 32.945869 9.693562## V23 14.250167 18.254248 64.965251## V24 36.570794 6.068047 5.204487## V25 93.650773 71.311008 40.484111## V26 95.324582 28.864561 41.400864## V27 121.932644 8.728825 9.401880## V28 8.676825 14.797016 5.469540## V29 36.022899 17.587858 11.817883## V30 15.963677 136.246945 14.289424
## 执行自适应套索 ## 多项式回归 family = "multinomial", ## ‘alpha = 1’ 是套索惩罚,'alpha=0'是岭惩罚。 alpha = 1, ## ## 惩罚系数:可以对每个系数应用单独的惩罚因子。这是一个乘以“lambda”以允许差异收缩的数字。对于某些变量可以为0,这意味着没有收缩,并且该变量始终包含在模型中。对于所有变量,默认值为1(对于“exclude”中列出的变量,默认值为无限大)。注意:惩罚因子在内部被重新调整为与nvars相加,lambda序列将反映这种变化。
## 使用10折CV执行自适应套索 ## 类型。度量:用于交叉验证的损失。 type.measure = "偏差", ## 惩罚vs CV MSE图plot(alasso2_cv)
## 在误差最小λ处提取系数lambda.min
## [1] 0.023834
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。do.call(cbind, coef(alasso2_cv, s = lambda.min))
## 31 x 3 sparse Matrix of class "dgCMatrix"## 1 1 1## (Intercept) 0.001070916 0.029687114 -0.030758030## V1 0.051853991 -0.329785101 0.277931110## V2 -0.414609162 -0.166765504 0.581374666## V3 0.498638681 -0.172468859 -0.326169822## V4 -0.336005338 -0.079578260 0.415583598## V5 -0.424216967 0.532071434 -0.107854467## V6 0.364828074 -0.035326316 -0.329501758## V7 -0.058746523 0.080343071 -0.021596548## V8 0.483592031 0.111422669 -0.595014699## V9 -0.155745580 -1.016502806 1.172248386## V10 -0.060698812 0.625050169 -0.564351357## V11 . . . ## V12 . . . ## V13 -0.175719655 0.283930678 -0.108211023## V14 0.196421536 -0.139576235 -0.056845300## V15 . . . ## V16 -0.037414770 0.040300172 -0.002885402## V17 0.149438019 -0.129742710 -0.019695308## V18 . . . ## V19 0.088822086 -0.130605368 0.041783282## V20 . . . ## V21 0.007141749 -0.002869644 -0.004272105## V22 0.125997952 -0.016924514 -0.109073438## V23 0.043024971 -0.026879150 -0.016145821## V24 0.016862193 0.083686360 -0.100548554## V25 . . . ## V26 . . . ## V27 . . . ## V28 -0.111429811 -0.069842376 0.181272187## V29 . . . ## V30 -0.032032333 -0.006590025 0.038622358
最终模型正确分类率
xtabs(~ y_multi_pred_class + y_multi)
## y_multi## y_multi_pred_class 1 2 3## 1 84 20 16## 2 30 136 19## 3 28 18 149
mean(y_multi == y_multi_pred_class)
## [1] 0.738
交叉验证测试集正确分类率
lapply(unique(foldid), function(id) { ## 拟合排除测试集(foldid==id) ## 使用模型拟合最佳lambda测试集Yïhat y_pred <- (predict(fit, newx = x_multi[foldid == id,], type = "class", s = lambda.min)) ## 测试集Y y <- y_multi[foldid == id] ## 测试集CCR mean(y == y_pred)}) %>%
## [1] 0.68 0.64 0.76 0.72 0.70 0.66 0.60 0.72 0.62 0.76
## [1] 0.686
二元逻辑回归示例
## # A tibble: 100 x 30## V1 V2 V3 V4 V5 V6 V7 V8## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 -0.61926135 0.01624409 -0.62606831 0.41268461 0.4944374 -0.4493269 0.6760053 -0.06771419## 2 1.09427278 0.47257285 -1.33714704 -0.64058126 0.2823199 -0.6093321 0.3547232 -0.62686515## 3 -0.35670402 0.30121334 0.19056192 0.23402677 0.1698086 1.2291427 1.1628095 0.88024242## 4 -2.46907012 2.84771447 1.66024352 1.56881297 -0.8330570 -0.5620088 -0.6142455 -1.76529838## 5 0.56728852 0.88888747 -0.01158671 0.57627526 -0.8689453 -0.3132571 0.6902907 -1.29961200## 6 0.91292543 0.77350086 0.55836355 -0.53509922 0.3507093 -0.5763021 -0.3882672 0.55518663## 7 0.09567305 0.14027229 -0.76043921 -0.04935541 1.5740992 -0.1240903 -1.1106276 1.72895452## 8 1.93420667 -0.71114983 -0.27387147 1.00113828 1.0439012 0.8028893 -0.6035769 -0.51136380## 9 0.28275701 1.05940570 -0.03944966 0.30277367 -0.9161762 0.6914934 0.6087553 0.30921594## 10 0.80143492 1.53674274 -1.01230763 -0.38480878 -2.0319100 0.2236314 -1.1628847 -0.52739792## # ... with 90 more rows, and 22 more variables: V9 <dbl>, V10 <dbl>, V11 <dbl>, V12 <dbl>,## # V13 <dbl>, V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>, V19 <dbl>, V20 <dbl>,## # V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>, V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>,## # V29 <dbl>, V30 <dbl>
as_data_frame(y)
## # A tibble: 100 x 1## value## <int>## 1 0## 2 1## 3 1## 4 0## 5 1## 6 0## 7 0## 8 0## 9 1## 10 1## # ... with 90 more rows
## 执行岭回归 ## 二元逻辑回归 family = "binomial", ## “alpha=1”是套索惩罚,“alpha=0”是岭惩罚。
##用10折CV进行岭回归 ##类型。度量:用于交叉验证的损失。 type.measure = "deviance", ## K = 10 是默认值。 nfold = 10, ## 多项式回归 ## ‘alpha = 1’ 是套索惩罚,'alpha=0'是岭惩罚。 alpha = 0)## 惩罚vs CV MSE图
## 在误差最小λ处lambda.min
## [1] 0.03488898
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。coef(ridge3_cv, s = lambda.min))
## 31 x 1 sparse Matrix of class "dgCMatrix"## 1## (Intercept) 0.1718290283## V1 0.1148574142## V2 0.5068431000## V3 -0.3384649794## V4 -0.8634050979## V5 -0.3141436782## V6 -0.6956355852## V7 0.0798900376## V8 -0.5167458568## V9 0.5193890584## V10 -1.0182682093## V11 -0.2077506627## V12 -0.2218540968## V13 -0.1638673635## V14 0.1370473811## V15 0.0388320169## V16 0.3621440665## V17 -0.1226309533## V18 -0.1492504287## V19 -0.0497939458## V20 -0.2024006258## V21 0.0006531455## V22 0.2456970018## V23 0.4333057414## V24 -0.1769632495## V25 0.5320062623## V26 -0.3875044960## V27 -0.2157079430## V28 0.3337625633## V29 -0.2659968175## V30 0.1601149964
## 截距估计应该取消。(best_ridge_coef3)[-1]##执行自适应套索 ## 多项式回归 family = "binomial", ## “alpha=1”是套索惩罚,“alpha=0”是岭惩罚。 alpha = 1,
## 使用10折CV执行自适应套索 ## 类型。度量:用于交叉验证的损失。 ##惩罚vs CV MSE图plot(alasso3_cv)
## 在误差最小λ处提取系数lambda.min
## [1] 0.5438827
## s:需要进行预测的惩罚参数“lambda”的值。默认值是用于创建模型的整个序列。coef(cv, s = lambda.min)
## 31 x 1 sparse Matrix of class "dgCMatrix"## 1## (Intercept) 0.19932789## V1 . ## V2 0.69081709## V3 -0.48062268## V4 -1.21628612## V5 . ## V6 -1.01918155## V7 . ## V8 -0.48394892## V9 0.79804285## V10 -1.49657785## V11 . ## V12 . ## V13 . ## V14 . ## V15 . ## V16 0.19759191## V17 . ## V18 . ## V19 . ## V20 . ## V21 . ## V22 0.04668665## V23 0.24445410## V24 . ## V25 0.57951934## V26 -0.21844124## V27 . ## V28 0.07144777## V29 -0.04682770## V30 .
绘制ROC曲线
## 提取预测概率和观察结果。pY <- as.(predict(alasso3, newx = x_bin, s = lambda.min, type = "response"))## ## 用AUC和阈值绘制ROC曲线plot(roc1)
交叉验证测试集AUC
lapply(unique(foldid), function(id) ## 拟合排除测试集 (foldid == id) ## 使用模型拟合最佳lambda测试集Yïhat y_pred <- (predict(fit, newx = x_bin[foldid == id], s = lambda.min) ## 测试组 Y y <- y_bin[alasso3_cv$foldid == id] ## 测试组 AUCroc(y ~ y_pred)$auc
## [1] 1.0000000 1.0000000 1.0000000 0.9200000 1.0000000 1.0000000 0.7619048 0.7916667 0.7200000## [10] 0.9375000
## [1] 0.9131071
点击文末 “阅读原文”
获取全文完整代码数据资料。
本文选自《R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析》。
点击标题查阅往期内容
R语言Lasso回归模型变量选择和糖尿病发展预测模型
【视频】Lasso回归、岭回归正则化回归数学原理及R软件实例
群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化
【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例R语言Lasso回归模型变量选择和糖尿病发展预测模型
用LASSO,adaptive LASSO预测通货膨胀时间序列MATLAB用Lasso回归拟合高维数据和交叉验证
群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化
高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据
Python高维变量选择:SCAD平滑剪切绝对偏差惩罚、Lasso惩罚函数比较
R使用LASSO回归预测股票收益
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)
Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例
R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
Python中的Lasso回归之最小角算法LARS
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
R语言实现LASSO回归——自己编写LASSO回归算法
r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现
R使用LASSO回归预测股票收益
R语言如何和何时使用glmnet岭回归
R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化
Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列
Python用ARIMA和SARIMA模型预测销量时间序列数据