欢迎光临散文网 会员登陆 & 注册

就 那条 发视频的 一视频 二例题 之 个人解法 飨以诸君

2023-11-21 17:14 作者:Mynasty  | 我要投稿


题1.


(1)


f'(x)

=

e^x-cosx+sinx

=

e^x+√2sin(x-π/4)

f'(x)>0

x∈(-5π/4,x。)∪(0,+∞)

f'(x)<0

x∈(x。,0)


lim(x→-5π/4+)f(x)

=

f(-5π/4)

=

e^(-5π/4)

0

f(0)=0

f(x)≥0


得证



(2)


G(x)

=

(g(x)-2)/x

=

(e^x+sinx+cosx-2)/x


x=0

g(0)

=

2

2

成立

a∈R


x>0

(g(x)-2)/x≥a

G(x)≥a

lim(x→0+)G(x)

=

lim(x→0+)(e^x+cosx-sinx)

=

2

lim(x→+∞)G(x)

=

lim(x→+∞)(e^x+cosx-sinx)

=

+∞

G'(x)=0

x(e^x+cosx-sinx)=e^x+sinx+cosx-2

(x-1)e^x+(x-1)cosx-(x+1)sinx=-2

H(x)=(x-1)e^x+(x-1)cosx-(x+1)sinx

H'(x)

=

xe^x+cosx-(x-1)sinx-sinx-(x+1)cosx

=

xe^x-xsinx-xcosx

=

x(e^x-sinx-cosx)

=

x(e^x-√2sin(x+π/4))

x>0

e^x>x+1>√2sin(x+π/4)

x>0

H'(x)>0

H(0)=-2

x>0

H(x)>-2

x>0

H(x)=-2

x>0

(x-1)e^x+(x-1)cosx-(x+1)sinx=-2

无解

G(x)min=2

a≤2


x<0

(g(x)-2)/x≤a

G(x)≤a

lim(x→0-)G(x)

=

lim(x→0-)(e^x+cosx-sinx)

=

2

lim(x→-∞)G(x)

=

0

G'(x)=0

x(e^x+cosx-sinx)=e^x+sinx+cosx-2

(x-1)e^x+(x-1)cosx-(x+1)sinx=-2

G(x)

=

(e^x+sinx+cosx-2)/x

=

(e^x+sinx+cosx+(x-1)e^x+(x-1)cosx-(x+1)sinx)/x

=

e^x+cosx-sinx

G'(x)

=

e^x-sinx-cosx

=

0

e^x=sinx+cosx

G(x)

=

2cosx

2

G(x)max=2

a≥2


a=2





题2.


(1)


F(x)=xcosx-sinx+x³/3

lim(x→0+)F(x)

=

0


lim(x→1-)F(x)

=

cos1-sin1+1/3

1-1²/2+1^4/4!-x^6/6!-(1-1³/3!+1^5/5!)+1/3

=

-1²/2+1³/3!+1^4/4!-x^6/6!-1^5/5!+1/3

=

1^4/4!(1-1/30-1/5)

0


F'(x)

=

cosx-xsinx-cosx+x²/2

=

x(x/2-sinx)

=

 0

1/2=sin(π/6)<sin1

x∈(0,1)

F'(x)=0

无解


F(x)>0

xcosx-sinx+x³/3>0

xcosx-sinx>-x³/3

f(x)>-x³/3


得证




(2)


f'(x)

=

cosx-xsinx+acosx

f'(0)=1+a

f'(π)=-1-a


f''(x)

=

-sinx-(sinx+xcosx)-asinx

=

(-2-a)sinx-xcosx

=

0

a=-(xcosx+2sinx)/sinx


f(x)

[0,π]

单调

(1+a)(-1-a)≥0

-(1+a)²≥0

(1+a)²≤0

a=-1


(xcosx+sinx)/sinx

-(xcosx+2sinx)cosx/sinx+cosx-xsinx

≥0

(xcosx+sinx)

-(xcosx+2sinx)cosx+sinxcosx-xsin²x

(xcosx+sinx)(-x-sinxcosx)≥0

(xcosx+sinx)(x+sinxcosx)≤0

xcosx+sinx≤0

a

-(xcosx+2sinx)/sinx

=

-(xcosx+sinx)/sinx-1

-1


f(x)

奇函数

f(x)

[-π,π]

单调


a=-1



ps.


个人解法

仅供参考

如有谬误

欢迎指正








有关那条

罄竹难书

是那什么

还想立牌坊

肮脏龌龊

腌臜不堪

“秒杀大招”

发视频的

无耻行径

详见

BV1Zz4y1S7x2

CV10088620

BV12r4y1K7ow

就 那条 发视频的 一视频 二例题 之 个人解法 飨以诸君的评论 (共 条)

分享到微博请遵守国家法律