直流电源的降噪与测量

摘要
直流开关电源会产生可闻噪声,常会听到轻微的啸叫声。那么,这种噪声来自哪里,如何减少或消除呢?本文介绍的几种简单方法可以在测量和设计应用时防止可闻噪声;文章还将指出,现有或规划好的直流电源电路PCB设计中常见的薄弱环节。
概述
人们普遍认为,片式多层陶瓷电容器(MLCC)或直流电源电路会产生可闻噪声,事实并不是这样。噪声是由印刷电路板引起的,而不是组件本身。
图1显示了三个典型的评估板。本文将逐步揭示这些部件的噪声,以及电路板尺寸及其安装对噪声产生的影响。

注:
从左到右分别为:MPQ4590,640V非隔离式稳压器,输出电流高达400mA;MPQ4316,具有扩频频率和低静态电流的45V/6A同步降压变换器;MPQ4572,60V/2A高效全集成同步降压变换器。
振源
当MLCC陶瓷电容器上的电压由于压电效应而变化时,电容器的几何形状也会发生变化,进而导致振动 (见图2)。

那么,PCB上的噪声是如何产生的?直流电源电路中的哪些组件才是根源呢?
陶瓷电容器(MLCC)中的电压变化会产生振动刺激。在声音敏感的频率范围(0.1kHz至7kHz)内,很容易听到振动。振动再通过焊点传递到PCB,PCB就会犹如扬声器膜片一样发出可闻噪声。
图3 显示了直流电源电路中的典型组件。其中,MLCC和PCB尺寸是产生可闻噪声的关键因素,其他组件不会产生噪声。

并非所有MLCC都具有相同的行为特性。只有大容量的II类和III类MLCC会产生压电效应。其他类型的电容器、模压电感、电阻和IC,在接有负载的情况下几何形状不会有任何变化。因此,其他组件均与可闻噪声无关(请参见表1)。
表1:可闻和不可闻系统中的组件分类

FCCM或AAM模式下的直流电源
在强制连续导通模式(FCCM)下工作的直流电源电路仅在语音敏感的音频范围内产生可闻噪声(例如GSM脉冲或其他周期性负载),而较高的直流开关电源频率是无法听到的。
当直流电源电路以高级异步调制模式(AAM)工作时,轻载模式的开关频率可在20kHz以下的较低范围内。AAM开关频率不是固定频率,而是随机的,这降低了噪声的可闻程度。AAM仅在轻载电流下才有效,此时通常没有强烈刺激,因此很少产生噪声。
三种机械系统的比较
PCB上产生的可闻噪声与弦乐器上产生声音的方式相同(请参见图4)。

具体理论描述如下:
刺激:系统接收输入信号,即接收刺激。人耳对2kHz至5kHz之间的音频最敏感,这与许多PCB的谐振频率相同。刺激波形就像用手指弹吉他或用小锤敲弦一样,起到狄拉克脉冲的作用,而许多部件都对频率产生影响,例如PCB谐振、刺激敲弦以及PCB对可闻基频和泛音的响应。当MLCC振动频率等于PCB谐振频率时,会产生最大噪声。
振动:振动可以产生运动。当振动表面过小时,MLCC在自由空气中的振动是听不到的。这类似于未经放大很难听到振动的乐器或琴弦。
琴桥:振动传递到音板,而琴桥(焊点)传递振动。带金属焊条或插入基板的MLCC会衰减传递的振动能量。
音板:音板将振动转换为可闻噪声。PCB就类似于音板,也相当于扬声器的膜片。
用麦克风测量PCB噪声
直流电源电路和PCB安装架产生的声学噪声和谐振频率可以通过麦克风和提供狄拉克脉冲刺激的小物件进行测量。电容式麦克风即是一个不错的选择,相比动圈式麦克风,它对MLCC的磁场敏感度较低。
用硬塑料或塑料镊子制成的小棒当作简单的机械听诊器,可以更容易听到可闻噪声(见图5)。而金属物体会发出更大的声音,有助于找到振动幅度较高的点。
继续阅读 >>>请复制下方链接进入MPS官网查看全文:
https://bit.ly/3qavZQG