欢迎光临散文网 会员登陆 & 注册

量子场论(十):时空中的粒子(一)

2022-12-24 06:30 作者:我的世界-华汁  | 我要投稿

庞加莱群描述闵可夫斯基时空的对称性,粒子在闵可夫斯基时空中运动。不同种类的粒子由质量、自旋、和一些其他的量子数加以区分,每个粒子具有一定的四维动量和自旋在某个方向上投影的量子数,对它做空间旋转和洛伦兹增速变换时,四维动量会改变,自旋投影值也可能改变,变化的方式由洛伦兹变换决定,但质量、自旋等其他量子数不会改变。当%5CLambda%3D1时,有:

%5Chat%20U%5E%7B-1%7D(%5Cmathbf1%2Ca)%5Chat%20P%5E%5Cmu%5Chat%20U(%5Cmathbf1%2Ca)%3D%5Chat%20P%5E%5Cmu.%5Ctag%7B10.1%7D

因此四维动量算符在量子时空平移变换下不变,从而内积%5Chat%20P%5E2%3D%5Chat%20P%5E%5Cmu%5Chat%20P_%5Cmu也不变。另一方面,%5Chat%20P%5E2是洛伦兹标量算符,于是它的本征值p%5E2是庞加莱变换下的不变量。对单个粒子有质壳关系p%5E2%3Dm%5E2成立,因此对单个粒子,这个不变量就是质量的平方。

实际上,粒子态由庞加莱群的不可约幺正表示表述。1939年尤金·魏格纳完成了这些表示的分类工作,一个粒子用在量子庞加莱变换下相互转化的态矢%5C%7B%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%5C%7D来定义,其中四维动量p%5E%5Cmu是四维动量算符在态矢%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle的本征值,即:

%5Chat%20P%5E%5Cmu%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3Dp%5E%5Cmu%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle.%5Ctag%7B10.2%7D

而指标%5Csigma表征所有其他自由度,通常取分立值。标量场单粒子态%7C%5Cmathbf%20p%5Crangle就是这样的态矢。

在量子时空平移变换的作用下,单粒子态%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle的变换为:

%5Chat%20U(%5Cmathbf%201%2Ca)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3De%5E%7B-i%5Chat%20P%5E%5Cmu%20a_%5Cmu%7D%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3De%5E%7B-ip%5E%5Cmu%20a_%5Cmu%7D%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle.%5Ctag%7B10.3%7D

只出现相位上的改变。另一方面,用量子洛伦兹变换%5Chat%20U(%5CLambda)作用得到单粒子态%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%2C满足:

%5Cbegin%7Balign%7D%5Chat%20P%5E%5Cmu%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%26%3D%5Chat%20U(%5CLambda)%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%5Cmu%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20U(%5CLambda)%5Chat%20P%5E%5Cnu%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%5C%5C%26%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.4%7D

因此,%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle的四维动量本征值为%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu。这意味着它必定是%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle的线性组合,即:

%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3D%5Csum_%7B%5Csigma%5E%5Cprime%7DC_%7B%5Csigma%5E%5Cprime%5Csigma%7D(%5CLambda%2Cp)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.5%7D

现在,我们要了解系数C_%7B%5Csigma%5E%5Cprime%5Csigma%7D(%5CLambda%2Cp)的形式。

在固有保时向洛伦兹变换下,p%5E%5Cmu的内积p%5E2不变,p%5E0的符号也不会改变,他们是所有惯性参考系的不变量。p%5E2的每个数值和p%5E0的每个符号决定了一组通过固有保时向洛伦兹变换联系起来的四维动量,可以从中选取一个标准四维动量k%5E%5Cmu,使得:

p%5E%5Cmu%3D%7BV%5E%5Cmu%7D_%5Cnu(p)k%5E%5Cnu.%5Ctag%7B10.6%7D

其中%7BV%5E%5Cmu%7D_%5Cnu(p)是依赖于p%5E%5Cmu的固有保时向洛伦兹变换。从而,标准四维动量k%5E%5Cmu就全权代表了这组四维动量%5C%7Bp%5E%5Cmu%5C%7D。可以将其中任意元素p%5E%5Cmu对应的单粒子态定义为:

%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%5Cequiv%20N(p)%5Chat%20U%5BV(p)%5D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.7%7D

其中N(p)是依赖于四维动量的归一化因子。上式左右两边出现同一个指标%5Csigma,实际上,这个式子规定了指标与四维动量的联系。对这个单粒子态做量子洛伦兹变换,得到:

%5Cbegin%7Balign%7D%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%26%3DN(p)%5Chat%20U%5BV(%5CLambda%20p)%5D%5Chat%20U%5E%7B-1%7D%5BV(%5CLambda%20p)%5D%5Chat%20U(%5CLambda)%5Chat%20U%5BV(p)%5D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%5C%5C%26%3DN(p)%5Chat%20U%5BV(%5CLambda%20p)%5D%5Chat%20U%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%5C%5C%26%3DN(p)%5Chat%20U%5BV(%5CLambda%20p)%5D%5Chat%20U(W)%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.8%7D

其中,固有保时向洛伦兹变换:

%7BW%5E%5Cmu%7D_%5Cnu%3D%7B%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%5E%5Cmu%7D_%5Cnu.%5Ctag%7B10.9%7D

把它作用于标准四维动量之上:

%7BW%5E%5Cmu%7D_%5Cnu%20k%5E%5Cnu%3D%7B%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%5E%5Cmu%7D_%5Cnu%20k%5E%5Cnu%3D%7B%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%5D%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu%3D%7B%5BV%5E%7B-1%7D(%5CLambda%20p)%5D%5E%5Cmu%7D_%5Cnu(%5CLambda%20p)%5E%5Cnu%3Dk%5E%5Cmu.%5Ctag%7B10.10%7D

可见%7BW%5E%5Cmu%7D_%5Cnu保证标准四维动量不变,所有让标准四维动量不变的洛伦兹变换%5C%7B%7BW%5E%5Cmu%7D_%5Cnu%5C%7D构成洛伦兹群的一个子群,称为该标准四维动量对应的小群,类似于(10.5)式,有:

%5Chat%20U(W)%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3D%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.11%7D

对于小群中的任意两个变换%7B(W_1)%5E%5Cmu%7D_%5Cnu%2C%7B(W_2)%5E%5Cmu%7D_%5Cnu,由上式推出:

%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W_2W_1)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U(W_2W_1)%7C%5CPsi_%7B%5Csigma%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U(W_2)%5Chat%20U(W_1)%7C%5CPsi_%7B%5Csigma%7D(k%5E%5Cmu)%5Crangle%5C%5C%3D%5Chat%20U(W_2)%5Csum_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1)%7C%5CPsi_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(k%5E%5Cmu)%5Crangle%3D%5Csum_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(W_2)D_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1)%7C%5CPsi_%7B%5Csigma%5E%7B%5Cprime%7D%7D(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.12%7D

从而得到同态关系:

D_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W_2W_1)%3D%5Csum_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(W_2)D_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1).%5Ctag%7B10.13%7D

可见,矩阵集合%5C%7BD(W)%5C%7D构成这个小群的一个线性表示。把(10.11)代入(10.8),得到:

%5Cbegin%7Balign%7D%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%26%3DN(p)%5Chat%20U%5BV(%5CLambda%20p)%5D%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle%5C%5C%26%3DN(p)%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%5Chat%20U%5BV(%5CLambda%20p)%5D%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.14%7D

根据(10.7)式,得到:

%5Chat%20U%5BV(%5CLambda%20p)%5D%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle%3D%5Cfrac1%7BN(%5CLambda%20p)%7D%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.15%7D

代入(10.14)式,得到:

%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3D%5Cfrac%7BN(p)%7D%7BN(%5CLambda%20p)%7D%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(%7B%5Clambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.16%7D

与(10.5)式比较,得到系数公式:

C_%7B%5Csigma%5E%5Cprime%5Csigma%7D(%5CLambda%20%2Cp)%3D%5Cfrac%7BN(p)%7D%7BN(%5CLambda%20p)%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D.%5Ctag%7B10.17%7D

上述讨论表明,我们可以通过标准四维动量k%5E%5Cmu和相应的小群对单粒子态分类,物理上有以下三种情况:

(1)质量非零的粒子:p%5E2%3Dm%5E2p%5E0%3E0,其中质量m%3E0

此时四维动量是类时的,取标准四维动量为k%5E%5Cmu%3D(m%2C0%2C0%2C0),任意空间旋转保证标准四维动量不变,因此这个标准四维动量对应的小群是SO(3)。

在量子力学中,归一化后的态矢仍具有一些任意性。态矢%7C%5CPsi%5Crangle与相差一个相因子的态矢e%5E%7Bi%5Cphi%7D%7C%5CPsi%5Crangle描述相同的态。因此,量子洛伦兹变换的同态关系应当修正为:

%5Chat%20U(%5CLambda_2)%5Chat%20U(%5CLambda_1)%3De%5E%7Bi%5Cphi(%5CLambda_2%2C%5CLambda_1)%7D%5Chat%20U(%5CLambda_2%5CLambda_1).%5Ctag%7B10.18%7D

若实相位不为零,则%5C%7B%5Chat%20U(%5CLambda)%5C%7D不是洛伦兹群的线性表示,而是投影表示。

对于任意小群变换W_1%2CW_2%5Cin%20SO(3),则有:

%5Chat%20U(W_2)%5Chat%20U(W_1)%3De%5E%7Bi%5Cphi(W_1%2CW_2)%7D%5Chat%20U(W_2W_1).%5Ctag%7B10.19%7D

左右两边分别作用在态矢%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle上,利用(10.11)式,得到:

%5Csum_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(W_2)D_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle%3De%5E%7Bi%5Cphi(W_2%2CW_1)%7D%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%7B%5Cprime%7D%5Csigma%7D(W_2W_1)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.20%7D

故:

%5Csum_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(W_2)D_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1)%3De%5E%7Bi%5Cphi(W_2%2CW_1)%7DD_%7B%5Csigma%5E%7B%5Cprime%7D%5Csigma%7D(W_2W_1).%5Ctag%7B10.21%7D

若相因子不恒为零,则{D(W)}构成SO(3)的一个投影表示。

在李群的群空间,每个点对应一个群元。由于群的封闭性,两个群元的乘积一定对应于群空间中的某个点。从而,群空间中的一条曲线意味着一系列的群乘积,乘出来的群元连续地组合成这条曲线。考虑 SO(3) 群空间内一条闭合曲线,它从恒元出发,通过一系列群乘积相继经过W_1W_2W_1两个点再回到恒元,则相应的量子变换是%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)。如果这条曲线能连续地收缩成恒元这一点,则%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)是恒等变换1。如果这条曲线包含奇数次对径点跳跃,就不能连续收缩到恒元一点,%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)不一定是恒等变换。不过,依这条曲线的路径重复两次,则包含偶数次对径点跳跃,则可通过连续形变消除这些跳跃,从而收缩为恒元一点。则:

%5B%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)%5D%5E2%3D1.%5Ctag%7B10.22%7D

由此得到%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)%3D%5Cpm%201,即:

%5Chat%20U(W_2)%5Chat%20U(W_1)%3D%5Cpm%5Chat%20U(W_2W_1).%5Ctag%7B10.23%7D

可见,SO(3)群的相因子可取±1。

SO(3)的覆盖群SU(2)是单连通的,群空间中的任意经过恒元的闭合曲线都能收缩到恒元一点处,因此相因子等于1,不具有投影表示。群论知识告诉我们,SU(2)群的不等价不可约表示都是幺正表示,记为:

D%5E%7B(s)%7D%2Cs%3D0%2C%5Cfrac12%2C1%2C%5Cfrac32%2C%E2%80%A6%5Ctag%7B10.24%7D

这里的s就是自旋量子数。线性表示D%5E%7B(s)%7D是2s+1维的,表示矩阵元表达为D%5E%7B(s)%7D_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W),其中%5Csigma%5E%5Cprime%2C%5Csigma%3D-s%2C-s%2B1%2C%E2%80%A6%2Cs-1%2Cs是自旋在某个方向上投影出来的本征值。因此,自旋为s的有质量粒子具有2s+1种自旋极化态。根据(10.16)式,自旋为s的有质量单粒子态%7C%5CPsi_%7Bs%2C%5Csigma%7D(p%5E%5Cmu)%5Crangle的量子洛伦兹变换为:

%5Chat%20U(%5CLambda)%7C%5CPsi_%7Bs%2C%5Csigma%7D(p%5E%5Cmu)%5Crangle%3D%5Cfrac%7BN(p)%7D%7BN(%5CLambda%20p)%7D%5Csum_%7B%5Csigma%5E%5Cprime%7DD%5E%7B(s)%7D_%7B%5Csigma%5E%5Cprime%5Csigma%7D%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%7C%5CPsi_%7Bs%2C%5Csigma%5E%5Cprime%7D(%7B%5Clambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.25%7D

可见,量子洛伦兹变换把一个极化态变成多个不同极化态的线性组合。

当s是整数时,D%5E%7B(s)%7D是SU(2)群的非忠实线性表示,同时也是SO(3)的线性表示,描述整数自旋的粒子。D%5E%7B(0)%7D是这两个群的恒等表示,描述零自旋粒子(例如希格斯粒子)。D%5E%7B(1)%7D是SO(3)的基础表示,描述自旋为1的粒子(例如光子)。

当s是半奇数时,D%5E%7B(s)%7D是SU(2)群的非忠实线性表示,同时也是SO(3)的双值表示,描述半奇数自旋粒子。D%5E%7B(%5Cfrac12)%7D是SU(2)群的基础表示,描述自旋为%5Cfrac12的粒子(例如电子)。

固有保时向洛伦兹群SO%5E%5Cuparrow(1%2C3)也是双连通的,它的覆盖群是复域上的特殊线性群SL(2%2C%5Cmathbb%20C)。在庞加莱群空间中,与恒元连通的部分对应于SO%5E%5Cuparrow(1%2C3)与时空平移群的半直积群,它是双连通的,与之对应的覆盖群是SL(2%2C%5Cmathbb%20C)与时空平移群的半直积群。

量子场论(十):时空中的粒子(一)的评论 (共 条)

分享到微博请遵守国家法律