欢迎光临散文网 会员登陆 & 注册

通信专业考研复试要了解的专业素养知识:通信网络系统

2022-09-26 07:30 作者:朝颜晚扶桑  | 我要投稿

ADSL

ADSL非对称数字用户线路,亦可称作非对称数字用户环路。是一种新的数据传输方式。它因为上行和下行带宽不对称,因此称为非对称数字用户线环路。

它采用频分复用技术把普通的电话线分成了电话、上行和下行三个相对独立的信道,从而避免了相互之间的干扰。即使边打电话边上网,也不会发生上网速率和通话质量下降的情况。通常ADSL可以提供最高1Mbps的上行速率和最高8Mbps的下行速率(也就是我们通常说的带宽),此时线路已经无法提供正常的通话服务。最新的ADSL2+技术可以提供最高24Mbps的下行速率,ADSL2+打破了ADSL接入方式带宽限制的瓶颈,使其应用范围更加广阔。

简介

ADSL是一种异步传输模式(ATM)。

在电信服务提供商端,需要将每条开通ADSL业务的电话线路连接在数字用户线路访问多路复用器(DSLAM)上。而在用户端,用户需要使用一个ADSL终端(因为和传统的调制解调器(Modem)类似,所以也被称为“猫”)来连接电话线路。由于ADSL使用高频信号,所以在两端还都要使用ADSL信号分离器将ADSL数据信号和普通音频电话信号分离出来,避免打电话的时候出现噪音干扰。

通常的ADSL终端有一个电话Line-In,一个以太网口,有些终端集成了ADSL信号分离器,还提供一个连接的Phone接口。

某些ADSL调制解调器使用USB接口与电脑相连,需要在电脑上安装指定的软件以添加虚拟网卡来进行通信。

技术标准

传输标准

由于受到传输高频信号的影响,ADSL需要电信服务提供商端接入设备和用户终端之间的距离不能超过5千米,也就是用户的电话线连到电话局的距离不能超过5千米。

ADSL设备在传输中需要遵循以下标准之一:

ITU-T G.992.1(G.dmt)

1. dmt:全速率,下行8Mbps,上行1.5Mbps

ITU-T G.992.2(G.lite)

1. lite:下行1.5Mbps,上行512Kbps

ITU-T G.994.1(G.hs)

可变比特率(VBR)

ANSI T1.413 Issue #2

下行8Mbps,上行896Kbps

还有一些更快更新的标准,但是还很少有电信服务提供商使用:

ITU G.992.3/4

ADSL2下行12Mbps,上行1.0Mbps

ITU G.992.3/4

Annex J ADSL2下行12Mbps,上行3.5Mbps

ITU G.992.5

ADSL2+下行24Mbps,上行1.0Mbps

ITU G.992.5

Annex M ADSL2+下行24Mbps,上行3.5Mbps

ADSL是一种非对称的DSL技术,所谓非对称是指用户线的上行速率与下行速率不同,上行速率低,下行速率高,特别适合传输多媒体信息业务,如视频点播(VOD)、多媒体信息检索和其他交互式业务。

以 ITU-T G.992.1 标准为例,ADSL 在一对铜线上支持上行速率512Kbps~1Mbps,下行速率1Mbps~8Mbps,有效传输距离在3~5公里范围以内。当电信服务提供商的设备端和用户终端之间距离小于1.3千米的时候,还可以使用速率更高的VDSL,它的速率可以达到下行55.2Mbps,上行19.2Mbps。

登录标准

ADSL通常提供三种网络登录方式:

桥接;PPPoA(PPPoverATM,基于ATM的端对端协议);PPPoE(PPPoverEthernet,基于以太网的端对端协议)。桥接是直接提供静态IP,而后两种通常不提供静态IP,是动态地给用户分配网络地址。

接入方式

专线接入和虚拟拨号

基本原理

传统的电话线系统使用的是铜线的低频部分(4kHz以下频段)。而ADSL采用DMT(离散多音频)技术,将原来电话线路4kHz到1.1MHz频段划分成256个频宽为4.3125khz的子频带。其中,4khz以下频段仍用于传送POTS(传统电话业务),20KhZ到138KhZ的频段用来传送上行信号,138KhZ到1.1MHZ的频段用来传送下行信号。DMT技术可以根据线路的情况调整在每个信道上所调制的比特数,以便充分地利用线路。一般来说,子信道的信噪比越大,在该信道上调制的比特数越多,如果某个子信道信噪比很差,则弃之不用。ADSL可达到上行640kbps、下行8Mbps的数据传输率。

由上可以看到,对于原先的电话信号而言,仍使用原先的频带,而基于ADSL的业务,使用的是话音以外的频带。所以,原先的电话业务不受任何影响。ADSL采用频分多路复用技术,在一条线路上可以同时存在3个信道;当使用HFC方式时,通过CABLE Modem可以使用永久连接。

主要特点

1. 一条电话线可同时接听,拨打电话并进行数据传输,两者互不影响。

2. 虽然使用的还是原来的电话线,但adsl传输的数据并不通过电话交换机,所以adsl上网不需要缴付额外的电话费,节省了费用。

3. adsl的数据传输速率是根据线路的情况自动调整的,它以“尽力而为”的方式进行数据传输

GSM

GSM是Global System for Mobile Communications的缩写,意为全球移动通信系统,是世界上主要的蜂窝系统之一。GSM是基于窄带TDMA制式,允许在一个射频同时进行8组通话。GSM80年代兴起于欧洲,1991年投入使用。到1997年底,已经在100多个国家运营,成为欧洲和亚洲实际上的标准,到了2001年,在全世界的162个国家已经建设了400个GSM通信网络。但GSM系统的容量是有限的,在网络用户过载时,就不得不构建更多的网络设施。值得欣慰的是GSM在其他方面性能优异,它除了提供标准化的列表和信令系统外,还开放了一些比较智能的业务如国际漫游等。GSM手机的方便之处在于它提供了一个智能卡,人们称之为SIM卡,并且机卡可以分离,这样用户更换手机并且定制个人信息这方面都十分便利了。GSM手机还允许用户接收160字长度的短信息。 

CDMA是码分多址的英文缩写(Code Division Multiple Access),它是在数字技术的分支--扩频通信技术上发展起来的一种崭新而成熟的无线通信技术。CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。 

CDMA和GSM是2G通信的主流制式,从技术上来说,它们之间的区别就在于无线发送接收的制式不同,调制解调的方法不同。对于用户来说,它们的不同在于: 

1. 通话质量。CDMA的通话质量要高于GSM,在相同环境下打电话,CDMA的杂音要比GSM小很多。 

2. 手机辐射。由于CDMA采用了出色的功率控制技术,因此CDMA手机的辐射要比GSM小很多。 

3. 高速数据上网。CDMA1x可以提供高达153.6kbps的上网速率,比GSM GPRS的20几k要快多了。 

资费的话实际差不多,移动的全球通和联通的新时空差不多,移动的神州行和联通的如意行差不多,移动的动感地带和联通的UP新势力差不多。 

再解释以下CDMA内部的分类和GSM的分类。 

GSM比较简单,先说GSM。所谓的GSM 900/1800/1900是指GSM手机的工作频率,分别是中国移动支持的900MHz,1900MHz和美国常用的1900MHz。在国内用支持900MHz和1800MHz的GSM 900/1800双频手机就可以了。如果要出国到美国用的,就要用支持1900MHz的三频手机了。

CDMA800,这是CDMA的工作频率。联通的CDMA是工作在800MHz下的。

CDMA2000 是目前2G CDMA的升级,是一种3G的标准。与目前的2G CDMA相比,CDMA2000更是能够提供几兆bps以上的数据速度。 

而CDMA 1x是现在联通CDMA网络所采取的技术。它指的是CDMA2000 1x,也就是CDMA2000 1x的缩写。与真正的CDMA2000相比,CDMA 1x就像我刚才说的,只能支持到153.6kbps的数据速度,因此被称为是2.5G的技术,还不是真正3G的技术。

符号间干扰

符号间干扰 - ISI - Inter Symbol Interference,所谓符号间干扰就是由无线电波传输多径与衰落以及抽样失真引起的,在TD中通过基于Midamble码的信道 估计和根升余弦滤波器得到了有效的抑制。而码间干扰指的就是多址干扰,主要是由于各用户信号之间存在一定的相关性造成的,而且会承接用户数量和发射功率的增加而迅速增大。符号间干扰指的是下面的含义:

  (1)在一个数字传输系统中所接收的信号的失真,该失真是表现在单个信号的暂时分散和随后的重叠,直到接收器无法准确地区分状态之间改变(例如,单个信号元素)的程度

  (2)在一个或多个电键间隔中的额外信号能量,该能量干扰了在另外一个电键间隔的信号的接收

  (3)由于来自一个或多个电键间隔中的额外信号能量所造成的干扰,它妨碍了在另外一个电键间隔内的信号接收。

产生原因

  由于实际信道的频带总是有限,并且偏离理想特性,所以使通过的信号在频域上产生线性失真,在时域上波形发生时散效应。这种时散效应对数字通信所造成的危害称之为符号间干扰(ISI)。

  另外,在无线信道中,由于存在多径传播问题,对数据传输也会产生ISI。当数据速率提高时,数据间的间隔就会减小,到一定程度符号重叠无法区分,产生ISI。

局域网与广域网

局域网

局域网(Local Area Network),简称LAN,是指在某一区域内由多台计算机互联成的计算机组。“某一区域”指的是同一办公室、同一建筑物、同一公司和同一学校等,一般是方圆几千米以内。局域网可以实现文件管理、应用软件共享、打印机共享、(扫描仪共享(注:扫描仪不能共享))工作组内的日程安排、电子邮件和传真通信服务等功能。局域网是封闭型的,可以由办公室内的两台计算机组成,也可以由一个公司内的上千台计算机组成。

局域网的现有拓扑结构

  网络中的计算机等设备要实现互联,就需要以一定的结构方式进行连接,这种连接方式就叫做“拓扑结构”,通俗地讲就是这些网络设备是如何连接在一起的。目前常见的网络拓扑结构主要有以下四大类:

  1. 星型结构

  这种结构是目前在局域网中应用得最为普遍的一种,在企业网络中几乎都是采用这一方式。星型网络几乎是Ethernet(以太网)网络专用,它是因网络中的各工作站节点设备通过一个网络集中设备(如集线器或者交换机)连接在一起,各节点呈星状分布而得名。这类网络目前用的最多的传输介质是双绞线,如常见的五类线、超五类双绞线等。

  这种拓扑结构网络的基本特点主要有如下几点:

  (1)容易实现:它所采用的传输介质一般都是采用通用的双绞线,这种传输介质相对来说比较便宜,如目前正品五类双绞线每米也仅1.5元左右,而同轴电缆最便宜的也要2.00元左右一米,光缆那更不用说了。这种拓扑结构主要应用于IEEE 802.2、IEEE 802.3标准的以太局域网中;

  (2)节点扩展、移动方便:节点扩展时只需要从集线器或交换机等集中设备中拉一条线即可,而要移动一个节点只需要把相应节点设备移到新节点即可,而不会像环型网络那样“牵其一而动全局”;

  (3)维护容易;一个节点出现故障不会影响其它节点的连接,可任意拆走故障节点;

  (4)采用广播信息传送方式:任何一个节点发送信息在整个网中的节点都可以收到,这在网络方面存在一定的隐患,但这在局域网中使用影响不大;

  (5)网络传输数据快:这一点可以从目前最新的1000Mbps到10G以太网接入速度可以看出。

  2. 环型结构

  这种结构的网络形式主要应用于令牌网中,在这种网络结构中各设备是直接通过电缆来串接的,最后形成一个闭环,整个网络发送的信息就是在这个环中传递,通常把这类网络称之为“令牌环网”。实际上大多数情况下这种拓扑结构的网络不会是所有计算机真的要连接成物理上的环型,一般情况下,环的两端是通过一个阻抗匹配器来实现环的封闭的,因为在实际组网过程中因地理位置的限制不方便真的做到环的两端物理连接。

  这种拓扑结构的网络主要有如下几个特点:

  (1)这种网络结构一般仅适用于IEEE 802.5的令牌网(Token ring network),在这种网络中,“令牌”是在环型连接中依次传递。所用的传输介质一般是同轴电缆。

  (2)这种网络实现也非常简单,投资最小。可以从其网络结构示意图中看出,组成这个网络除了各工作站就是传输介质--同轴电缆,以及一些连接器材,没有价格昂贵的节点集中设备,如集线器和交换机。但也正因为这样,所以这种网络所能实现的功能最为简单,仅能当作一般的文件服务模式;

  (3)传输速度较快:在令牌网中允许有16Mbps的传输速度,它比普通的10Mbps以太网要快许多。当然随着以太网的广泛应用和以太网技术的发展,以太网的速度也得到了极大提高,目前普遍都能提供100Mbps的网速,远比16Mbps要高。

  (4)维护困难:从其网络结构可以看到,整个网络各节点间是直接串联,这样任何一个节点出了故障都会造成整个网络的中断、瘫痪,维护起来非常不便。另一方面因为同轴电缆所采用的是插针式的接触方式,所以非常容易造成接触不良,网络中断,而且这样查找起来非常困难,这一点相信维护过这种网络的人都会深有体会。

  (5)扩展性能差:也是因为它的环型结构,决定了它的扩展性能远不如星型结构的好,如果要新添加或移动节点,就必须中断整个网络,在环的两端作好连接器才能连接。 

  3. 总线型结构

  这种网络拓扑结构中所有设备都直接与总线相连,它所采用的介质一般也是同轴电缆(包括粗缆和细缆),不过现在也有采用光缆作为总线型传输介质的,如后面我们将要讲的ATM网、Cable Modem所采用的网络等都属于总线型网络结构。

  这种结构具有以下几个方面的特点:

  (1)组网费用低:从示意图可以这样的结构根本不需要另外的互联设备,是直接通过一条总线进行连接,所以组网费用较低;

  (2)这种网络因为各节点是共用总线带宽的,所以在传输速度上会随着接入网络的用户的增多而下降;

  (3)网络用户扩展较灵活:需要扩展用户时只需要添加一个接线器即可,但所能连接的用户数量有限;

  (4)维护较容易:单个节点失效不影响整个网络的正常通信。但是如果总线一断,则整个网络或者相应主干网段就断了。

  (5)这种网络拓扑结构的缺点是一次仅能一个端用户发送数据,其它端用户必须等待到获得发送权。

  4. 混合型拓扑结构

  这种网络拓扑结构是由前面所讲的星型结构和总线型结构的网络结合在一起的网络结构,这样的拓扑结构更能满足较大网络的拓展,解决星型网络在传输距离上的局限,而同时又解决了总线型网络在连接用户数量的限制。这种网络拓扑结构同时兼顾了星型网与总线型网络的优点,在缺点方面得到了一定的弥补。

局域网与广域网、城域网的区别

  早期的局域网网络技术都是各不同厂家所专有,互不兼容。后来,IEEE(国际电子电气工程师协会)推动了局域网技术的标准化,由此产生了IEEE 802系列标准。这使得在建设局域网时可以选用不同厂家的设备,并能保证其兼容性。这一系列标准覆盖了双绞线、同轴电缆、光纤和无线等多种传输媒介和组网方式,并包括网络测试和管理的内容。随着新技术的不断出现,这一系列标准仍在不断的更新变化之中。

  以太网(IEEE 802.3标准)是最常用的局域网组网方式。以太网使用双绞线作为传输媒介。在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1000Mb/s和10000Mb/s的速率。

  其他主要的局域网类型有令牌环(Token Ring,IBM所创,之后申请为IEEE 802.5标准)和FDDI(光纤分布数字接口,IEEE 802.8)。令牌环网络采用同轴电缆作为传输媒介,具有更好的抗干扰性;但是网络结构不能很容易的改变。FDDI采用光纤传输,网络带宽大,适于用作连接多个局域网的骨干网。

  近两年来,随着802.11标准的制定,无线局域网的应用大为普及。这一标准采用2.4GHz 和5.8GHz 的频段,数据传输速度可以达到11Mb/s和54Mb/s,覆盖范围为100米。

  局域网标准定义了传输媒介、编码和介质访问等底层(一二层)功能。要使数据通过复杂的网络结构传输到达目的地,还需要具有寻址、路由和流量控制等功能的网络协议的支持。TCP/IP(传输控制协议/互联网络协议)是最普遍使用的局域网网络协议。它也是互联网所使用的网络协议。其他常用的局域网协议包括,IPX、AppleTalk等。

广域网

  广域网(Wide Area Network),简称WAN,是一种跨越大的、地域性的计算机网络的集合。通常跨越省、市,甚至一个国家。广域网包括大大小小不同的子网,子网可以是局域网,也可以是小型的广域网。 

局域网和广域网的区别

  局域网是在某一区域内的,而广域网要跨越较大的地域,那么如何来界定这个区域呢?例如,一家大型公司的总公司位于北京,而分公司遍布全国各地,如果该公司将所有的分公司都通过网络联接在一起,那么一个分公司就是一个局域网,而整个总公司网络就是一个广域网。

什么是无线局域网(Wireless LAN, WLAN)

  计算机局域网是把分布在数公里范围内的不同物理位置的计算机设备连在一起,在网络软件的支持下可以相互通讯和资源共享的网络系统。通常计算机组网的传输媒介主要依赖铜缆或光缆,构成有线局域网。但有线网络在某些场合要受到布线的限制:布线、改线工程量大;线路容易损坏;网中的各节点不可移动。特别是当要把相离较远的节点联结起来时,敷设专用通讯线路布线施工难度之大,费用、耗时之多,实是令人生畏。这些问题都对正在迅速扩大的联网需求形成了严重的瓶颈阻塞,限制了用户联网。

  WLAN就是解决有线网络以上问题而出现的。WLAN利用电磁波在空气中发送和接受数据,而无需线缆介质。WLAN的数据传输速率现在已经能够达到11Mbps,传输距离可远至20km以上。无线联网方式是对有线联网方式的一种补充和扩展,使网上的计算机具有可移动性,能快速、方便的解决以有线方式不易实现的网络联通问题。

  与有线网络相比,WLAN具有以下优点:

  安装便捷:一般在网络建设当中,施工周期最长、对周边环境影响最大的就是网络布线的施工了。在施工过程时,往往需要破墙掘地、穿线架管。而WLAN最大的优势就是免去或减少了这部分繁杂的网络布线的工作量,一般只要在安放一个或多个接入点(Access Point)设备就可建立覆盖整个建筑或地区的局域网络。

  使用灵活:在有线网络中,网络设备的安放位置受网络信息点位置的限制。而一旦WLAN建成后,在无线网的信号覆盖区域内任何一个位置都可以接入网络,进行通讯。

  经济节约:由于有线网络中缺少灵活性,这就要求网络的规划者尽可能地考虑未来的发展的需要,这就往往导致需要预设大量利用率较低的信息点。而一旦网络的发展超出了设计规划时的预期,又要花费较多费用进行网络改造。而WLAN可以避免或减少以上情况的发生。

  易于扩展:WLAN又多种配置方式,能够根据实际需要灵活选择。这样,WLAN能够胜任只有几个用户的小型局域网到上千用户的大型网络,并且能够提供像“漫游(Roaming)”等有线网络无法提供的特性。

  由于WLAN具有多方面的优点,其发展十分迅速。在最近几年里,WLAN已经在医院、商店、工厂和学校等不适合网络布线的场合得到了广泛的应用。

  据权威调研机构Cahners In-Stat Group预计,全球无线局域网市场将在2000年至2004年保持快速增长趋势,每年平均增长率高达25%。无线局域网市场的网卡、接入点设备及其他相关设备的总销售额也将在2000年轻松突破10亿美元大关,在2004年达到21.97亿美元。打开路由器自动拨号就行了

  一般路由器的后面的铭牌上会注明它的ip地址和用户名密码,如果没有就是在说明书中有,如果说明书中也没有,就上网找找

  进去之后,就是配置界面了,其中有一栏就是自动拨号的设置,把你的宽带的用户名和密码写上,选中自动连接.保存,退出就可以了.

  这时,只要你的路由器一开就会自动拨号连接了.你电脑的ip地址设成自动获取就ok了,不在需要什么拨号软件了

  如果你的是国产的路由器,那么里面的配置界面是中文的,很好理解的.如果不是中文界面,看看语言里有没有中文,要是没有,那你就得懂点英文了. 

  宽带mondem(摩登、猫)+路由器即可多台机器共享上网,路由器与adsl及集线器或交换机的连接方式:把adsl modem连接到宽带路由器上,然后通过宽带路由器的10m/100m自适应以太网接口和交换机或hub相连,这样我们就实现了共享上网的硬件安装工作。最后,只要在连接到交换机的主机上安装相应的adsl拨号软件,设置相关的用户名和口令,我们就可以通过宽带路由器共享上网了。 

设置pc共享上网:

  好了,能过上面这些对宽带路由器的设置,宽带路由器已经能为需要共享的pc提供nat转换功能了,但这时我们的pc还不能上网,因为还需要在客户机器上进行一些tcp/ip选项的设置以后才能实现上网。其实用户也可以开启宽带路由器的dhcp功能,这样就不需要在pc机上进行设置便可以自动获得ip地址及默认网关、dns等信息。但由于dchp开启以后对于宽带路由器的性能会有很大的影响,所以这里我们建议大家使用这种静态分配ip地址的方法,来获得更高的性能。

  首先,和刚才配置宽带路由器的机器一样,我们右键点击网上邻居的本地连接属性,打开对话框,选择tcp/ip选项,在tcp/ip选项中选择“internet协议(tcp/ip)选项”在弹出的对话框中依次输入ip地址、默认网关、dns这几个选项,在局域网中,我们的ip址一般使用的是私有c类ip地址,这里我们键入192.168.0.x,这里的x每台机器都应该是不同的,如192.168.0.2、192.168.0.3 等子网掩码xp操作系统会根据你所输入的ip地址自动生成,建议用户不要随便修改。

  这里还需要切记一点,一般我们的宽带路由器都被设置为192.168.0.1这个地址,所以我们的客户机就不能使用这个ip地址了,否则会因为ip地址冲突而造成所有的机器都不能共享上网的问题。

  设置完pc的ip地址后,我们将默认网关设置为宽带路由器的ip地址192.168.0.1,我们的pc在进行上网的时候就会向宽带路由器发送连接请求了。

  最后我们设置dns服务器,这个选项根据地区的不同和线路供应商的不同,都会不同,这里我们输入202.100.96.68,用户可以根据自己的申请的宽带线路,来具体进行设置。好了,通过这样的设置以后,局域网中的pc就可以通过宽带路由器进行共享上网了。

城域网

  城域网(Metropolitan Area Network),简称MAN,基本上一种大型的LAN,通常使用与LAN相似的技术。只所以将MAN单独的列出的一个主要原因是已经有了一个标准:分布式队列双总线DQDB(Distributed Queue Dual Bus),即IEEE802.6。DQDB是由双总线构成,所有的计算机都连结在上面。

  所谓宽带城域网,就是在城市范围内,以IP和ATM电信技术为基础,以光纤作为传输媒介,集数据、语音、视频服务于一体的高带宽、多功能、多业务接入的的多媒体通信网络。

  它能够满足政府机构、金融保险、大中小学校、公司企业等单位对高速率、高质量数据通信业务日益旺盛的需求,特别是快速发展起来的互联网用户群对宽带高速上网的需求。

业务特点:

  传输速率高——宽带城域网采用大容量的Packet Over SDH传输技术,为高速路由和交换提供传输保障。千兆以太网技术在宽带城域网中的广泛应用,使骨干路由器的端口能高速有效地扩展到分布层交换机上。光纤、网线到用户桌面,使数据传输速度达到100M、1000M。

  用户投入少,接入简单——宽带城域网用户端设备便宜而且普及,可以使用路由器、HUB甚至普通的网卡。用户只需将光纤、网线进行适当连接,并简单配置用户网卡或路由器的相关参数即可接入宽带城域网。个人用户只要在自己的电脑上安装一块以太网卡,将宽带城域网的接口插入网卡就联网了。安装过程和以前的电话一样,只不过网线代替了电话线,电脑代替了电话机。

  技术先进、安全——技术上为用户提供了高度安全的服务保障。宽带城域网在网络中提供了第二层的VLAN隔离,使安全性得到保障。由于VLAN的安全性,只有在用户局域网内的计算机才能互相访问,非用户局域网内的计算机都无法通过非正常途径访问用户的计算机。如果要从网外访问,则必须通过正常的路由和安全体系。因此黑客若想利用底层的漏洞进行破坏是不可能的。虚拟拨号的普通用户通过宽带接入服务器上网,经过账号和密码的验证才可以上网,用户可以非常方便地自行控制上网时间和地点。

主要用途及适用范围:

  高速上网——利用宽带IP网频带宽、速度快的特点,用户可以快速访问Internet及享受一切相关的互联网服务(包括WWW、电子邮件、新闻组、BBS、互联网导航、信息搜索、远程文件传送等),端口速度达到10M以上。

  互动游戏——“互动游戏网”可以让您享受到Internet网上游戏和局域网游戏相结合的全新游戏体验。通过宽带网,即使是相隔一百公里的同城网友,也可以不计流量地相约玩三维联网游戏。

  VOD视频点播——让你坐在家里利用WEB浏览器随心所欲地点播自己爱看的节目,包括电影精品、流行的电视剧集,还有视频新闻、体育节目、戏曲歌舞、MTV、卡拉OK等。

  网络电视(NETTV)——突破传统的电视模式,跨越时间和空间的约束,在网上实现无限频道的电视收视。 通过WEB浏览器的方式直接从网上收看电视节目,克服了现有电视频道受地区及气候等多种因素约束的弊病,而且有利于进行一种新型交互式电视剧枣“网络电视剧”的制作和播放。

  远程医疗——采用先进的数字处理技术和宽带通信技术,医务人员为远在几百公里或几千公里之外的病人进行诊断和治疗,远程医疗是随着宽带多媒体通信的兴起而发展起来的一种新的医疗手段。

  远程会议——异地开会不用出差,也不用出门,在高速信息网络上的视频会议系统中,“天涯若比邻”的感觉得到了最完美的诠释。

  远程教育----从根本上克服了基于电视技术的单向广播式、基于WEB网页的文本查询式和基于昂贵得无法进入家庭的会议电视等三种方式的缺陷,运用宽带网最新产品和技术,将图、文、声等多媒体信息,以交互的方式进入普通家庭、学校和企事业单位,学生可通过宽带网在家收看教学节目并可与老师实时交互;可上Internet查资料,以Email电子邮件等方式布置作业、交作业,解答提问等;缺课可检索课程数据库以VOD方式播放老师讲课录象等。

  远程监控(WEBCAM)----枣对远程的系统或其他东西进行监控,授权用户通过WEB自由进行镜头的转动、调焦等操作,实现实时的监控管理功能。监控系统采用数字监控方式。数字监控方式很好地与计算机网络结合在一起,充分发挥宽带城域网的带宽优势。这是未来监控系统发展的流行趋势。

  家庭证券交易系统----可在家里交互式地进行证券大户室形式的网上炒股,不但可以实时查阅深、沪股市行情,获取全面及时的金融信息,还可以通过多种分析工具进行即时分析,并可进行网上实时下单交易,参考专家股评。

  宽带业务还可为广大用户提供Internet信息浏览、信息查询、收发电子邮件、网上游戏、多媒体网上教育、视音频点播等多项服务。

  局域网就是将单独的微机或终端,利用网络相互连接起来,遵循一定的协议,进行信息交换,实现资源共享。网线常用的有:双绞线、同轴电缆、光纤等。双绞线可按其是否外加金属网丝套的屏蔽层而区分为屏蔽双绞线(STP)和非屏蔽双绞线(UTP)。从性价比和可维护性出发,大多数局域网使用非屏蔽双绞线(UTP-Unshielded Twisted pair) 作为布线的传输介质来组网。

OFDM

主要思想

将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰ISI。每个子信道上的信号带宽小于信道的相关带宽[这样产生的衰落为平坦性衰落,避免了频率选择性衰落],因此每个子信道上的可以看成平坦性衰落,从而可以消除码间串扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。

 在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM,W-OFDM,F-OFDM,MIMO-OFDM,多带-OFDM。OFDM中的各个载波是相互正交的,每个载波在一个符号时间内有整数个载波周期,每个载波的频谱零点和相邻载波的零点重叠,这样便减小了载波间的干扰。由于载波间有部分重叠,所以它比传统的FDMA提高了频带利用率。

在OFDM传播过程中,高速信息数据流通过串并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。

在过去的频分复用(FDM)系统中,整个带宽分成N个子频带,子频带之间不重叠,为了避免子频带间相互干扰,频带间通常加保护带宽,但这会使频谱利用率下降。为了克服这个缺点,OFDM采用N个重叠的子频带,子频带间正交,因而在接收端无需分离频谱就可将信号接收下来。OFDM系统的一个主要优点是正交的子载波可以利用快速傅利叶变换(FFT/IFFT)实现调制和解调。对于N点的IFFT运算,需要实施N2次复数乘法,而采用常见的基于2的IFFT算法,其复数乘法仅为(N/2)log2N,可显著降低运算复杂度。

在OFDM系统的发射端加入保护间隔,主要是为了消除多径所造成的ISI。其方法是在OFDM符号保护间隔内填入循环前缀,以保证在FFT周期内OFDM符号的时延副本内包含的波形周期个数也是整数。这样,时延小于保护间隔的信号就不会在解调过程中产生ISI。

由于OFDM技术有较强的抗ISI能力以及高频谱效率,2001年开始应用于光通信中,相当多的研究表明了该技术在光通信中的可行性。

基本模型:

正交频分复用OFDM(OrthogonalFrequencyDivisionMultiplex)是一种多载波调制方式,通过减小和消除码间串扰的影响来克服信道的频率选择性衰落。它的基本原理是将信号分割为N个子信号,然后用N个子信号分别调制N个相互正交的子载波。由于子载波的频谱相互重叠,因而可以得到较高的频谱效率。近几年OFDM在无线通信领域得到了广泛的应用。

下图是OFDM基带信号处理原理图。其中,(a)是发射机工作原理,(b)是接收机工作原理。

OFDM基带信号处理原理图

当调制信号通过无线信道到达接收端时,由于信道多径效应带来的码间串扰的作用,子载波之间不再保持良好的正交状态,因而发送前需要在码元间插入保护间隔。如果保护间隔大于最大时延扩展,则所有时延小于保护间隔的多径信号将不会延伸到下一个码元期间,从而有效地消除了码间串扰。当采用单载波调制时,为减小ISI的影响,需要采用多级均衡器,这会遇到收敛和复杂性高等问题。

在发射端,首先对比特流进行QAM或QPSK调制,然后依次经过串并变换和IFFT变换,再将并行数据转化为串行数据,加上保护间隔(又称“循环前缀”),形成OFDM码元。在组帧时,须加入同步序列和信道估计序列,以便接收端进行突发检测、同步和信道估计,最后输出正交的基带信号。

当接收机检测到信号到达时,首先进行同步和信道估计。当完成时间同步、小数倍频偏估计和纠正后,经过FFT变换,进行整数倍频偏估计和纠正,此时得到的数据是QAM或QPSK的已调数据。对该数据进行相应的解调,就可得到比特流。

OFDM提高频谱效率

FDM/FDMA(频分复用/多址)技术其实是传统的技术,将较宽的频带分成若干较窄的子带(子载波)进行并行发送是最朴素的实现宽带传输的方法。但是为了避免各子载波之间的干扰,不得不在相邻的子载波之间保留较大的间隔(如图(a)所示),这大大降低了频谱效率。因此,频谱效率更高的TDM/TDMA(时分复用/多址)和CDM/CDMA技术成为了无线通信的核心传输技术。但近几年,由于数字调制技术FFT(快速傅里叶变换)的发展,使FDM技术有了革命性的变化。FFT允许将FDM的各个子载波重叠排列,同时保持子载波之间的正交性(以避免子载波之间干扰)。如图(b)所示,部分重叠的子载波排列可以大大提高频谱效率,因为相同的带宽内可以容纳更多的子载波。

优势

OFDM存在很多技术优点见如下,在3G、4G中被运用,作为通信方面其有很多优势:

DFT-S-OFDM

(1) 在窄带带宽下也能够发出大量的数据。OFDM技术能同时分开至少1000个数字信号,而且在干扰的信号周围可以安全运行的能力将直接威胁到目前市场上已经开始流行的CDMA技术的进一步发展壮大的态势,正是由于具有了这种特殊的信号“穿透能力”使得OFDM技术深受欧洲通信营运商以及手机生产商的喜爱和欢迎,例如加利福尼亚Cisco系统公司、纽约Flarion工学院以及朗讯工学院等开始使用,在加拿大Wi-LAN工学院也开始使用这项技术。

(2) OFDM技术能够持续不断地监控传输介质上通信特性的突然变化,由于通信路径传送数据的能力会随时间发生变化,所以OFDM能动态地与之相适应,并且接通和切断相应的载波以保证持续地进行成功的通信;

(3) 该技术可以自动地检测到传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信;

(4) OFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号散播的地区。高速的数据传播及数字语音广播都希望降低多径效应对信号的影响。

(5) OFDM技术的最大优点是对抗频率选择性衰落或窄带干扰。在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但是在多载波系统中,仅仅有很小一部分载波会受到干扰。对这些子信道还可以采用纠错码来进行纠错。

(6) 可以有效地对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好得多。

(7) 通过各个子载波的联合编码,具有很强的抗衰落能力。OFDM技术本身已经利用了信道的频率分集,如果衰落不是特别严重,就没有必要再加时域均衡器。通过将各个信道联合编码,则可以使系统性能得到提高。

(8) OFDM技术抗窄带干扰性很强,因为这些干扰仅仅影响到很小一部分的子信道。

(9) 可以选用基于IFFT/FFT的OFDM实现方法;

(10) 信道利用率很高,这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2Baud/Hz。 (baud 即 波特;1 Baud = log2M (bit/s) ,其中M是信号的编码级数)。

不足:

虽然OFDM有上述优点,但是同样其信号调制机制也使得OFDM信号在传输过程中存在着一些劣势:

(1)对相位噪声和载波频偏十分敏感

这是OFDM技术一个非常致命的缺点,整个OFDM系统对各个子载波之间的正交性要求格外严格,任何一点小的载波频偏都会破坏子载波之间的正交性,引起ICI,【注释:(频偏之后不再严格正交,破坏了正交性,产生频偏干扰)】。同样,相位噪声也会导致码元星座点的旋转、扩散,从而形成ICI。而单载波系统就没有这个问题,相位噪声和载波频偏仅仅是降低了接收到的信噪比SNR,而不会引起互相之间的干扰。

(2)峰均比过大

OFDM信号由多个子载波信号组成,这些子载波信号由不同的调制符号独立调制。同传统的恒包络的调制方法相比,OFDM调制存在一个很高的峰值因子。因为OFDM信号是很多个小信号的总和,这些小信号的相位是由要传输的数据序列决定的。对某些数据,这些小信号可能同相,而在幅度上叠加在一起从而产生很大的瞬时峰值幅度。而峰均比过大,将会增加A/D和D/A的复杂性,而且会降低射频功率放大器的效率。同时,在发射端,放大器的最大输出功率就限制了信号的峰值,这会在OFDM频段内和相邻频段之间产生干扰。

(3)所需线性范围宽

由于OFDM系统峰值平均功率比(PAPR)大,对非线性放大更为敏感,故OFDM调制系统比单载波系统对放大器的线性范围要求更高。

实现问题:

虽然OFDM已成为新一代无线通信最有竞争力的技术,但这种技术也存在一些内在的局限和设计中必须注意的问题:

子载波的排列和分配

OFDM子载波可以按两种方式排列:集中式(Locolized)和分布式(Distributed)。

集中式即将若干连续子载波分配给一个用户,这种方式下系统可以通过频域调度(scheduling)选择较优的子载波组(用户)进行传输,从而获得多用户分集增益。

另外,集中方式也可以降低信道估计的难度。但这种方式获得的频率分集增益较小,用户平均性能略差。

分布式系统将分配给一个用户的子载波分散到整个带宽,从而获得频率分集增益。但这种方式下信道估计较为复杂,也无法采用频域调度。设计中应根据实际情况在上述两种方式中灵活进行选择。

PAPR问题

OFDM系统由于发送频域信号,峰平比(PAPR,Peak-to-Average PowerRatio)较高,从而会增加了发射机功放的成本和耗电量,不利于在上行链路实现(终端成本和耗电量受到限制)。在未来的上行移动通信系统中,很可能将采用改进型的OFDM技术,如DFT-S(离散傅丽叶变换扩展)-OFDM或带有降PAPR技术(子载波保留、削波)的OFDM。

多小区多址和干扰抑制

OFDM系统虽然保证了小区内用户间的正交性,但无法实现自然的小区间多址(CDMA则很容易实现)。

如果不采取任何额外设计,系统将面临严重的小区间干扰(WiMAX系统就因缺乏这方面的考虑而可能为多小区组网带来困难)。可能的解决方案包括:跳频OFDMA、小区间频域协调、干扰消除等。

影响:

随着OFDM技术的发展,也出现了一系列改进的OFDM技术,以解决OFDM本身的一些问题。下面对最主要的几个技术进行介绍。首先,OFDM本身不具有多址能力,需要和其他的多址技术,如TDMA、CDMA、FDMA等结合实现多址,包括OFDMA(正交频分复用)、MC(多载波)-CDMA、MC-DS(直接序列扩频)-CDMA、VSF-OFCDM(可变扩频因子正交频码分复用)等技术。DFT-S-OFDM(离散傅丽叶变换扩展OFDM)是一种为降低PAPR设计的OFDM改进技术。

子信道OFDMA

将OFDM和FDMA技术结合形成的OFDMA技术是最常见的OFDM多址技术,又分为子信道(Subchannel)OFDMA和跳频OFDMA。子信道OFDMA即将整个OFDM系统的带宽分成若干子信道,每个子信道包括若干子载波,分配给一个用户(也可以一个用户占用多个子信道)。

OFDM子载波可以按两种方式组合成子信道:集中式(Locolized)和分布式(Distributed),如图所示。集中式即将若干连续子载波分配给一个子信道(用户),这种方式下系统可以通过频域调度(scheduling)选择较优的子信道(用户)进行传输,从而获得多用户分集增益(图(a))。另外,集中方式也可以降低信道估计的难度。但这种方式获得的频率分集增益较小,用户平均性能略差。分布式系统将分配给一个子信道的子载波分散到整个带宽,各子载波的子载波交替排列,从而获得频率分集增益(图(b))。但这种方式下信道估计较为复杂,也无法采用频域调度,抗频偏能力也较差。设计中应根据实际情况在上述两种方式中灵活进行选择。

跳频OFDMA

子信道OFDMA对子信道(用户)的子载波分配相对固定,即某个用户在相当长的时长内使用指定的子载波组(这个时长由频域调度的周期而定)。这种OFDMA系统足以实现小区内的多址,但实现小区间多址却有一定的问题。因为如果各小区根据本小区的信道变化情况进行调度,各小区使用的子载波资源难免冲突,随之导致小区间干扰。如果要避免这样的干扰,则需要在相邻小区间进行协调(联合调度),但这种协调可能需要网络层的信令交换的支持,对网络结构的影响较大。

另一种选择就是采用跳频OFDMA。在这种系统中,分配给一个用户的子载波资源快速变化,每个时隙,此用户在所有子载波中抽取若干子载波使用,同一时隙中,各用户选用不同的子载波组(如图所示)。与基于频域调度的子信道化不同,这种子载波的选择通常不依赖信道条件而定,而是随机抽取。在下一个时隙,无论信道是否发生变化,各用户都跳到另一组子载波发送,但用户使用的子载波仍不冲突。跳频的周期可能比子信道OFDMA的调度周期短的多,最短可为OFDM符号长度。这样,在小区内部,各用户仍然正交,并可利用频域分集增益。在小区之间不需进行协调,使用的子载波可能冲突,但快速跳频机制可以将这些干扰在时域和频域分散开来,即可将干扰白化为噪声,大大降低干扰的危害。随着各小区的负载的加重,冲突的子载波越来越多,这种“干扰噪声”也会积累,使信噪比降低,但在负载不是很重的系统中,跳频OFDMA可以简单而有效地抑制小区间干扰。

DFT-S-OFDM

DFT-S-OFDM是基于OFDM的一种改进技术。由于传统OFDM技术的PAPR较高,在上行链路用户便携或手持终端有一定困难。OFDM本身也可以采用一系列降低PAPR的附加技术,如子载波预留和削波等。另一种方法是在发射机的IFFT处理前对系统进行预扩展处理,其中最典型的就是用离散傅丽叶变换进行扩展,这就是DFT-S-OFDM技术。

如图所示,将每个用户所使用的子载波进行DFT处理,由时域转换到频域,然后将各用户的频域信号输入到IFFT模块,这样各用户的信号又一起被转换到时域并发送。经过这样的改进,我们发现每个用户的发送信号由频域信号(传统OFDM)又回到了时域信号(和单载波系统相同),这样PAPR就被大大降低了。由于在这个系统中,每个用户的发送信号波形类似于单载波,也有人将其看作一种单载波技术,虽然它是从OFDM技术演变而来的。

在接收机端,系统先通过IFFT将信号转换到频域,然后用频域均衡器对每个用户的信号进行均衡(在发射机端须插入CP以实现频域均衡),最后通过DFT解扩展恢复用户数据

应用:

下一代移动通信系统在性能方面主要有以下要求:户速率在准静止(低速移动和固定)情况下达20Mbit/s,在高速移动情况下达2Mbit/s;量要达到第三代系统的5?10倍,传输质量相当于甚至优于第三代系统;条件相同时小区覆盖范围等于或大于第三代系统;具有不同速率间的自动切换能力,以保证通信质量;网络的每比特成本要比第三代低。 在功能方面主要有以下要求:持下一代因特网和所有的信息设备、家用电器等;现与固定网或专用网的无缝化连接;能通过中间件支持和开通多种多样的IP业务;能提供用户定义的个性化服务;按服务级别收费。

由于信道传输特性不理想,各类无线和移动通信中普遍存在着符号间干扰(ISI)。通常采用自适应均衡器来加以克服,但是,在高速数字通信系统中,为了保证克服ISI,往往要求均衡器的抽头数很大,尤其是城市环境可能使得均衡器的抽头数达上百。这样,必然大大增加了均衡器的复杂程度,使设备造价和成本大大提高。为了能在下一代移动通信中有效解决这一问题,OFDM技术因其频谱利用率高和抗多径衰落性能好而被普遍看好,以取代复杂而昂贵的自适应均衡器。近年来,由于DSP技术的飞速发展,OFDM作为一种可以有效对抗ISI的高速传输技术,引起了广泛关注。

OFDM技术的主要思想是:将指配的信道分成许多正交子信道,在每个子信道上进行窄带调制和传输,信号带宽小于信道的相关带宽。

与下一代移动通信系统有关的OFDM系统关键系统技术有:

时域和频域同步

前面已经提及,OFDM系统对定时和频率偏移敏感,特别是实际应用中可能与FDMA、TDMA和CDMA等多址方式结合使用时,时域和频率同步显得尤为重要。与其它数字通信系统一样,同步分为捕获和跟踪两个阶段。

在下行链路中,基站向各个移动终端广播式发同步信号,所以,下行链路同步相对简单,较易实现。

在上行链路中,来自不同移动终端的信号必须同步到达基站,才能保证子载波间的正交性。基站根据各移动终端发来的子载波携带信息进行时域和频域同步信息的提取,再由基站发回移动终端,以便让移动终端进行同步。具体实现时,同步将分为时域同步和频域同步,也可以时频域同时进行同步。

信道估计

在OFDM系统中,信道估计器的设计主要有两个问题:一是导频信息的选择。由于无线信道常常是衰落信道,需要不断对信道进行跟踪,因此导频信息也必须不断的传送。二是既有较低的复杂度又有良好的导频跟踪能力的信道估计器的设计。

在实际设计中,导频信息选择和最佳估计器的设计通常又是相互关联的,因为估计器的性能与导频信息的传输方式有关。

信道编码和交织

为了提高数字通信系统性能,信道编码和交织是通常采用的方法。对于衰落信道中的随机错误,可以采用信道编码;对于衰落信道中的突发错误,可以采用交织。实际应用中,通常同时采用信道编码和交织,进一步改善整个系统的性能。

在OFDM系统中,如果信道衰落不是太深,均衡是无法再利用信道的分集特性来改善系统性能的,因为OFDM系统自身具有利用信道分集特性的能力,一般的信道特性信息已经被OFDM这种调制方式本身所利用了。但是,OFDM系统的结构却为在子载波间进行编码提供了机会,形成COFDM方式。编码可以采用各种码,如分组码、卷积码等,卷积码的效果要比分组码好。

降低峰均功率比

由于OFDM信号时域上表现为N个正交子载波信号的叠加,当这N个信号恰好均以峰值占相加时,OFDM信号也将产生最大峰值,该峰值功率是平均功率的N倍。尽管峰值功率出现的概率较低,但为了不失真地传输这些高峰均功率比(Peak to Average Power Ratio,PAPR)的OFDM信号,发送端对高功率放大器(HPA)的线性度要求很高且发送效率极低,接收端对前端放大器以及A/D变换器的线性度要求也很高。因此,高的PAPR使得OFDM系统的性能大大下降甚至直接影响实际误应用。为了解决这一问题,人们提出了基于信号畸变技术、信号扰码技术和基于信号空间扩展等降低OFDM系统PAPR的方法。

均衡

在一般的衰落环境下,OFDM系统中均衡不是有效改善系统性能的方法。因为均衡的实质是补偿多径信道引起的码间干扰,而OFDM技术本身已经利用了多径信道的分集特性,因此在一般情况下,OFDM系统就不必再做均衡了。

在高度散射的信道中,信道记忆长度很长,CP的长度必须很长,才能够使ISI尽量不出现。但是,CP长度过长必然导致能量大量损失,尤其对子载波个数不是很大的系统。这时,可以考虑加均衡器以使CP的长度适当减小,即通过增加系统的复杂性换取系统频带利用率的提高。

wlan和wifi的区别一:

wifi包含于WLAN中,发射信号的功率不同,覆盖范围不同,事实上WIFI就是WLANA(无线局域网联盟)的一个商标,该商标仅保障使用该商标的商品互相之间可以合作,与标准本身实际上没有关系,但因 为WIFI 主要采用802.11b协议,因此人们逐渐习惯用WIFI来称呼802.11b协议。从包含关系上来说,WIFI是WLAN的一个标准,WIFI包含于 WLAN中,属于采用WLAN协议中的一项新技术。WiFi的覆盖范围则可达300英尺左右(约合90米),WLAN最大(加天线)可以到5KM。

WIFI和WLAN的区别二:

覆盖的无线信号范围不同,WIFI(Wireless Fidelity),又称802.11b标准,它的最大优点就是传输速度较高,可以达到11Mbps,另外它的有效距离也很长,同时也与已有的各种 802.11DSSS设备兼容。无线上网已经成为现实。无线电波的覆盖范围广,基于蓝牙技术的电波覆盖范 围非常小,半径大约只有50英尺左右约合15米,而Wi-Fi的半径则可达300英尺左右约合90米,办公室自不用说,就是在整栋大楼中也可使用。不过随 着wifi技术的发展,wifi信号未来覆盖的范围将更宽。

通信专业考研复试要了解的专业素养知识:通信网络系统的评论 (共 条)

分享到微博请遵守国家法律